{"title":"基于mtDNA D-loop区分析的瓯江和陵江大麻种群结构与遗传多样性","authors":"Liangjie Zhao, Erica Chenoweth, Qigen Liu","doi":"10.1080/24701394.2016.1278533","DOIUrl":null,"url":null,"abstract":"Abstract In order to understand the influence of human activities such as habitat fragmentation on freshwater fish population evolution, we investigated and compared the genetic diversity and phylogeography of Sinibrama macrops populations in the Oujiang River and Ling River. Mitochondrial control region sequences (D-loop region) of 131 specimens from six populations were obtained and analyzed. The diversity of main stream in the Ou River was lower than that in Ling River. Changtan population showed the lowest diversity (H = 0.646 ± 0.077; π = 0.00060 ± 0.00820). Pairwise FST, gene flow (Nm), and genetic distance (Da) indicated that Longquan and Changtan significantly differentiate from other populations. Nested clade phylogeographical analysis (NCPA) showed some clades and total cladogram experienced isolation by distance. In conclusion, the populations from severely fragmented Ou River have the lower diversity and more intense differentiation than that from the mainstream of Ling River, Changtan population present the lowest diversity and were isolated by the dam construction.","PeriodicalId":54298,"journal":{"name":"Mitochondrial Dna Part a","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Population structure and genetic diversity of Sinibrama macrops from Ou River and Ling River based on mtDNA D-loop region analysis, China\",\"authors\":\"Liangjie Zhao, Erica Chenoweth, Qigen Liu\",\"doi\":\"10.1080/24701394.2016.1278533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In order to understand the influence of human activities such as habitat fragmentation on freshwater fish population evolution, we investigated and compared the genetic diversity and phylogeography of Sinibrama macrops populations in the Oujiang River and Ling River. Mitochondrial control region sequences (D-loop region) of 131 specimens from six populations were obtained and analyzed. The diversity of main stream in the Ou River was lower than that in Ling River. Changtan population showed the lowest diversity (H = 0.646 ± 0.077; π = 0.00060 ± 0.00820). Pairwise FST, gene flow (Nm), and genetic distance (Da) indicated that Longquan and Changtan significantly differentiate from other populations. Nested clade phylogeographical analysis (NCPA) showed some clades and total cladogram experienced isolation by distance. In conclusion, the populations from severely fragmented Ou River have the lower diversity and more intense differentiation than that from the mainstream of Ling River, Changtan population present the lowest diversity and were isolated by the dam construction.\",\"PeriodicalId\":54298,\"journal\":{\"name\":\"Mitochondrial Dna Part a\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mitochondrial Dna Part a\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/24701394.2016.1278533\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrial Dna Part a","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/24701394.2016.1278533","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Population structure and genetic diversity of Sinibrama macrops from Ou River and Ling River based on mtDNA D-loop region analysis, China
Abstract In order to understand the influence of human activities such as habitat fragmentation on freshwater fish population evolution, we investigated and compared the genetic diversity and phylogeography of Sinibrama macrops populations in the Oujiang River and Ling River. Mitochondrial control region sequences (D-loop region) of 131 specimens from six populations were obtained and analyzed. The diversity of main stream in the Ou River was lower than that in Ling River. Changtan population showed the lowest diversity (H = 0.646 ± 0.077; π = 0.00060 ± 0.00820). Pairwise FST, gene flow (Nm), and genetic distance (Da) indicated that Longquan and Changtan significantly differentiate from other populations. Nested clade phylogeographical analysis (NCPA) showed some clades and total cladogram experienced isolation by distance. In conclusion, the populations from severely fragmented Ou River have the lower diversity and more intense differentiation than that from the mainstream of Ling River, Changtan population present the lowest diversity and were isolated by the dam construction.
期刊介绍:
Mitochondrial DNA Part A publishes original high-quality manuscripts on physical, chemical, and biochemical aspects of mtDNA and proteins involved in mtDNA metabolism, and/or interactions. Manuscripts on cytosolic and extracellular mtDNA, and on dysfunction caused by alterations in mtDNA integrity as well as methodological papers detailing novel approaches for mtDNA manipulation in vitro and in vivo are welcome. Descriptive papers on DNA sequences from mitochondrial genomes, and also analytical papers in the areas of population genetics, phylogenetics and human evolution that use mitochondrial DNA as a source of evidence for studies will be considered for publication. The Journal also considers manuscripts that examine population genetic and systematic theory that specifically address the use of mitochondrial DNA sequences, as well as papers that discuss the utility of mitochondrial DNA information in medical studies and in human evolutionary biology.