全球平均海平面收支的逐年关闭调整,包括集总雪、水汽和永久冻土质量分量

IF 0.9 Q4 REMOTE SENSING Journal of Geodetic Science Pub Date : 2020-01-01 DOI:10.1515/jogs-2020-0109
H. Iz, C. K. Shum
{"title":"全球平均海平面收支的逐年关闭调整,包括集总雪、水汽和永久冻土质量分量","authors":"H. Iz, C. K. Shum","doi":"10.1515/jogs-2020-0109","DOIUrl":null,"url":null,"abstract":"Abstract Global mean sea level budget is rigorously adjusted during the period 2005–2015 with an emphasis on closing the budget on a year by year basis as opposed to using linear trends of global mean sea level components. The adjustment also accounts for the effect of snow, water vapor, and permafrost mass components as a lump sum. The approach provides better resolution for evaluating individual contribution of each budget component year by year in tandem with the other components. Year by year budget misclosures and the confidence intervals of the year by year adjusted budget components are suggestive of an increasing non-linearity in satellite altimetry derived global mean sea level measurements starting in 2012, which are not present in the other components. The solution also generates time series iteratively for the lumped snow, water vapor, and permafrost mass components as well as an estimate for its linear trend, 0.06±0.59 mm/yr. Nonetheless, its standard error is markedly large because of the un-modeled variability in satellite altimetry observed yearly averaged global mean sea level anomalies.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":"8 1","pages":"83 - 90"},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Year by year closure adjustment of global mean sea level budget, inclusive of lumped snow, water vapor, and permafrost mass components\",\"authors\":\"H. Iz, C. K. Shum\",\"doi\":\"10.1515/jogs-2020-0109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Global mean sea level budget is rigorously adjusted during the period 2005–2015 with an emphasis on closing the budget on a year by year basis as opposed to using linear trends of global mean sea level components. The adjustment also accounts for the effect of snow, water vapor, and permafrost mass components as a lump sum. The approach provides better resolution for evaluating individual contribution of each budget component year by year in tandem with the other components. Year by year budget misclosures and the confidence intervals of the year by year adjusted budget components are suggestive of an increasing non-linearity in satellite altimetry derived global mean sea level measurements starting in 2012, which are not present in the other components. The solution also generates time series iteratively for the lumped snow, water vapor, and permafrost mass components as well as an estimate for its linear trend, 0.06±0.59 mm/yr. Nonetheless, its standard error is markedly large because of the un-modeled variability in satellite altimetry observed yearly averaged global mean sea level anomalies.\",\"PeriodicalId\":44569,\"journal\":{\"name\":\"Journal of Geodetic Science\",\"volume\":\"8 1\",\"pages\":\"83 - 90\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodetic Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jogs-2020-0109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodetic Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jogs-2020-0109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 2

摘要

全球平均海平面预算在2005-2015年期间进行了严格调整,重点是在逐年的基础上关闭预算,而不是使用全球平均海平面分量的线性趋势。调整还考虑了积雪、水汽和永久冻土质量分量的影响。这种方法可以更好地解决每年与其他组成部分一起评估每个预算组成部分的个别捐款的问题。逐年预算误闭和逐年调整预算分量的置信区间表明,从2012年开始,卫星测高得到的全球平均海平面测量值的非线性增加,这在其他分量中不存在。该解决方案还可以迭代地生成集总雪、水蒸气和永久冻土质量成分的时间序列,以及其线性趋势的估计,0.06±0.59 mm/yr。尽管如此,由于卫星测高观测到的年平均全球平均海平面异常的未模拟变率,其标准误差明显很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Year by year closure adjustment of global mean sea level budget, inclusive of lumped snow, water vapor, and permafrost mass components
Abstract Global mean sea level budget is rigorously adjusted during the period 2005–2015 with an emphasis on closing the budget on a year by year basis as opposed to using linear trends of global mean sea level components. The adjustment also accounts for the effect of snow, water vapor, and permafrost mass components as a lump sum. The approach provides better resolution for evaluating individual contribution of each budget component year by year in tandem with the other components. Year by year budget misclosures and the confidence intervals of the year by year adjusted budget components are suggestive of an increasing non-linearity in satellite altimetry derived global mean sea level measurements starting in 2012, which are not present in the other components. The solution also generates time series iteratively for the lumped snow, water vapor, and permafrost mass components as well as an estimate for its linear trend, 0.06±0.59 mm/yr. Nonetheless, its standard error is markedly large because of the un-modeled variability in satellite altimetry observed yearly averaged global mean sea level anomalies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geodetic Science
Journal of Geodetic Science REMOTE SENSING-
CiteScore
1.90
自引率
7.70%
发文量
3
审稿时长
14 weeks
期刊最新文献
Accurate computation of geoid-quasigeoid separation in mountainous region – A case study in Colorado with full extension to the experimental geoid region Metrica – An application for collecting and navigating to geodetic control network points. Part II: Practical verification A gap-filling algorithm selection strategy for GRACE and GRACE Follow-On time series based on hydrological signal characteristics of the individual river basins The three Swedish kings of geodesy – Speech at the NKG General Assembly dinner in 2022 On the connection of the Ecuadorian Vertical Datum to the IHRS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1