面向实体匹配的深度学习:一个设计空间探索

Sidharth Mudgal, Han Li, Theodoros Rekatsinas, A. Doan, Youngchoon Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, V. Raghavendra
{"title":"面向实体匹配的深度学习:一个设计空间探索","authors":"Sidharth Mudgal, Han Li, Theodoros Rekatsinas, A. Doan, Youngchoon Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, V. Raghavendra","doi":"10.1145/3183713.3196926","DOIUrl":null,"url":null,"abstract":"Entity matching (EM) finds data instances that refer to the same real-world entity. In this paper we examine applying deep learning (DL) to EM, to understand DL's benefits and limitations. We review many DL solutions that have been developed for related matching tasks in text processing (e.g., entity linking, textual entailment, etc.). We categorize these solutions and define a space of DL solutions for EM, as embodied by four solutions with varying representational power: SIF, RNN, Attention, and Hybrid. Next, we investigate the types of EM problems for which DL can be helpful. We consider three such problem types, which match structured data instances, textual instances, and dirty instances, respectively. We empirically compare the above four DL solutions with Magellan, a state-of-the-art learning-based EM solution. The results show that DL does not outperform current solutions on structured EM, but it can significantly outperform them on textual and dirty EM. For practitioners, this suggests that they should seriously consider using DL for textual and dirty EM problems. Finally, we analyze DL's performance and discuss future research directions.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"427","resultStr":"{\"title\":\"Deep Learning for Entity Matching: A Design Space Exploration\",\"authors\":\"Sidharth Mudgal, Han Li, Theodoros Rekatsinas, A. Doan, Youngchoon Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, V. Raghavendra\",\"doi\":\"10.1145/3183713.3196926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entity matching (EM) finds data instances that refer to the same real-world entity. In this paper we examine applying deep learning (DL) to EM, to understand DL's benefits and limitations. We review many DL solutions that have been developed for related matching tasks in text processing (e.g., entity linking, textual entailment, etc.). We categorize these solutions and define a space of DL solutions for EM, as embodied by four solutions with varying representational power: SIF, RNN, Attention, and Hybrid. Next, we investigate the types of EM problems for which DL can be helpful. We consider three such problem types, which match structured data instances, textual instances, and dirty instances, respectively. We empirically compare the above four DL solutions with Magellan, a state-of-the-art learning-based EM solution. The results show that DL does not outperform current solutions on structured EM, but it can significantly outperform them on textual and dirty EM. For practitioners, this suggests that they should seriously consider using DL for textual and dirty EM problems. Finally, we analyze DL's performance and discuss future research directions.\",\"PeriodicalId\":20430,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Management of Data\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"427\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3183713.3196926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3196926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 427

摘要

实体匹配(EM)查找引用相同现实世界实体的数据实例。在本文中,我们研究了将深度学习(DL)应用于EM,以了解DL的优点和局限性。我们回顾了许多为文本处理中的相关匹配任务(例如,实体链接,文本蕴涵等)开发的深度学习解决方案。我们对这些解决方案进行了分类,并定义了EM的深度学习解决方案空间,具体体现为四个具有不同表示能力的解决方案:SIF、RNN、Attention和Hybrid。接下来,我们将探讨深度学习可以帮助解决的EM问题类型。我们考虑三种这样的问题类型,它们分别匹配结构化数据实例、文本实例和脏实例。我们将上述四种深度学习解决方案与麦哲伦(最先进的基于学习的EM解决方案)进行了实证比较。结果表明,深度学习在结构化EM上的表现并不优于当前的解决方案,但在文本EM和脏EM上的表现明显优于它们。对于从业者来说,这表明他们应该认真考虑将深度学习用于文本EM和脏EM问题。最后,对深度学习的性能进行了分析,并对未来的研究方向进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning for Entity Matching: A Design Space Exploration
Entity matching (EM) finds data instances that refer to the same real-world entity. In this paper we examine applying deep learning (DL) to EM, to understand DL's benefits and limitations. We review many DL solutions that have been developed for related matching tasks in text processing (e.g., entity linking, textual entailment, etc.). We categorize these solutions and define a space of DL solutions for EM, as embodied by four solutions with varying representational power: SIF, RNN, Attention, and Hybrid. Next, we investigate the types of EM problems for which DL can be helpful. We consider three such problem types, which match structured data instances, textual instances, and dirty instances, respectively. We empirically compare the above four DL solutions with Magellan, a state-of-the-art learning-based EM solution. The results show that DL does not outperform current solutions on structured EM, but it can significantly outperform them on textual and dirty EM. For practitioners, this suggests that they should seriously consider using DL for textual and dirty EM problems. Finally, we analyze DL's performance and discuss future research directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta-Dataflows: Efficient Exploratory Dataflow Jobs Columnstore and B+ tree - Are Hybrid Physical Designs Important? Demonstration of VerdictDB, the Platform-Independent AQP System Efficient Selection of Geospatial Data on Maps for Interactive and Visualized Exploration Session details: Keynote1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1