Junying Huang, C. Y. Lin, Yang Liu, Zhihua Li, Haigang Yang
{"title":"岛式fpga的尺寸感知放置","authors":"Junying Huang, C. Y. Lin, Yang Liu, Zhihua Li, Haigang Yang","doi":"10.1109/FPT.2014.7082749","DOIUrl":null,"url":null,"abstract":"In this paper we first examine the impact of FPGA size on overall performance and run-time of placement and routing in the context of cluster-based island-style FPGAs. Based on the observations, an FPGA placement algorithm, Min-Size, is introduced to alleviate the deterioration of performance and run-time of placement and routing when using a large FPGA to implement a circuit. We achieve this by allowing Min-Size to generate a more compact placement of logic, I/O and hard blocks. Our experimental results have shown a 3X and 4X speedup in placement and routing run-time, a 38% and 41% reduction in wire length, and a 8% and 5% improvement in critical path delay when FPGA size increases 10 times.","PeriodicalId":6877,"journal":{"name":"2014 International Conference on Field-Programmable Technology (FPT)","volume":"18 5 1","pages":"28-35"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size aware placement for island style FPGAs\",\"authors\":\"Junying Huang, C. Y. Lin, Yang Liu, Zhihua Li, Haigang Yang\",\"doi\":\"10.1109/FPT.2014.7082749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we first examine the impact of FPGA size on overall performance and run-time of placement and routing in the context of cluster-based island-style FPGAs. Based on the observations, an FPGA placement algorithm, Min-Size, is introduced to alleviate the deterioration of performance and run-time of placement and routing when using a large FPGA to implement a circuit. We achieve this by allowing Min-Size to generate a more compact placement of logic, I/O and hard blocks. Our experimental results have shown a 3X and 4X speedup in placement and routing run-time, a 38% and 41% reduction in wire length, and a 8% and 5% improvement in critical path delay when FPGA size increases 10 times.\",\"PeriodicalId\":6877,\"journal\":{\"name\":\"2014 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"18 5 1\",\"pages\":\"28-35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2014.7082749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2014.7082749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we first examine the impact of FPGA size on overall performance and run-time of placement and routing in the context of cluster-based island-style FPGAs. Based on the observations, an FPGA placement algorithm, Min-Size, is introduced to alleviate the deterioration of performance and run-time of placement and routing when using a large FPGA to implement a circuit. We achieve this by allowing Min-Size to generate a more compact placement of logic, I/O and hard blocks. Our experimental results have shown a 3X and 4X speedup in placement and routing run-time, a 38% and 41% reduction in wire length, and a 8% and 5% improvement in critical path delay when FPGA size increases 10 times.