{"title":"一种考虑结构和语义的多视图知识图嵌入模型","authors":"Jia Peng, Neng Gao, Yifei Zhang, Min Li","doi":"10.1109/CSCWD57460.2023.10152719","DOIUrl":null,"url":null,"abstract":"The essence of knowledge representation learning is to embed the knowledge graph into a low-dimensional vector space to make knowledge computable and deductible. Semantic indiscriminate knowledge representation models usually focus more on the scalability on real world knowledge graphs. They assume that the vector representations of entities and relations are consistent in any semantic environment. Semantic discriminate knowledge representation models focus more on precision. They assume that the vector representations should depend on the specific semantic environment. However, both the two kinds only consider knowledge embedding in semantic space, ignoring the rich features of network structure contained between triplet entities. The MulSS model proposed in this paper is a joint embedding learning method across network structure space and semantic space. By synchronizing the Deepwalk network representation learning method into the semantic indiscriminate model TransE, MulSS achieves better performance than TransE and some semantic discriminate knowledge representation models on triplet classification task. This shows that it is of great significance to extend knowledge representation learning from the single semantic space to the network structure and semantic joint space.","PeriodicalId":51008,"journal":{"name":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","volume":"29 1","pages":"1532-1537"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-view Knowledge Graph Embedding Model Considering Structure and Semantics\",\"authors\":\"Jia Peng, Neng Gao, Yifei Zhang, Min Li\",\"doi\":\"10.1109/CSCWD57460.2023.10152719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The essence of knowledge representation learning is to embed the knowledge graph into a low-dimensional vector space to make knowledge computable and deductible. Semantic indiscriminate knowledge representation models usually focus more on the scalability on real world knowledge graphs. They assume that the vector representations of entities and relations are consistent in any semantic environment. Semantic discriminate knowledge representation models focus more on precision. They assume that the vector representations should depend on the specific semantic environment. However, both the two kinds only consider knowledge embedding in semantic space, ignoring the rich features of network structure contained between triplet entities. The MulSS model proposed in this paper is a joint embedding learning method across network structure space and semantic space. By synchronizing the Deepwalk network representation learning method into the semantic indiscriminate model TransE, MulSS achieves better performance than TransE and some semantic discriminate knowledge representation models on triplet classification task. This shows that it is of great significance to extend knowledge representation learning from the single semantic space to the network structure and semantic joint space.\",\"PeriodicalId\":51008,\"journal\":{\"name\":\"Computer Supported Cooperative Work-The Journal of Collaborative Computing\",\"volume\":\"29 1\",\"pages\":\"1532-1537\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Supported Cooperative Work-The Journal of Collaborative Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCWD57460.2023.10152719\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCWD57460.2023.10152719","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Multi-view Knowledge Graph Embedding Model Considering Structure and Semantics
The essence of knowledge representation learning is to embed the knowledge graph into a low-dimensional vector space to make knowledge computable and deductible. Semantic indiscriminate knowledge representation models usually focus more on the scalability on real world knowledge graphs. They assume that the vector representations of entities and relations are consistent in any semantic environment. Semantic discriminate knowledge representation models focus more on precision. They assume that the vector representations should depend on the specific semantic environment. However, both the two kinds only consider knowledge embedding in semantic space, ignoring the rich features of network structure contained between triplet entities. The MulSS model proposed in this paper is a joint embedding learning method across network structure space and semantic space. By synchronizing the Deepwalk network representation learning method into the semantic indiscriminate model TransE, MulSS achieves better performance than TransE and some semantic discriminate knowledge representation models on triplet classification task. This shows that it is of great significance to extend knowledge representation learning from the single semantic space to the network structure and semantic joint space.
期刊介绍:
Computer Supported Cooperative Work (CSCW): The Journal of Collaborative Computing and Work Practices is devoted to innovative research in computer-supported cooperative work (CSCW). It provides an interdisciplinary and international forum for the debate and exchange of ideas concerning theoretical, practical, technical, and social issues in CSCW.
The CSCW Journal arose in response to the growing interest in the design, implementation and use of technical systems (including computing, information, and communications technologies) which support people working cooperatively, and its scope remains to encompass the multifarious aspects of research within CSCW and related areas.
The CSCW Journal focuses on research oriented towards the development of collaborative computing technologies on the basis of studies of actual cooperative work practices (where ‘work’ is used in the wider sense). That is, it welcomes in particular submissions that (a) report on findings from ethnographic or similar kinds of in-depth fieldwork of work practices with a view to their technological implications, (b) report on empirical evaluations of the use of extant or novel technical solutions under real-world conditions, and/or (c) develop technical or conceptual frameworks for practice-oriented computing research based on previous fieldwork and evaluations.