基于贪婪顺序语法变换的高效通用无损数据压缩算法使用上下文模型

E. Yang, Dake He
{"title":"基于贪婪顺序语法变换的高效通用无损数据压缩算法使用上下文模型","authors":"E. Yang, Dake He","doi":"10.1109/TIT.2003.818411","DOIUrl":null,"url":null,"abstract":"For pt. I see ibid., vol.46, p.755-88 (2000). The concept of context-free grammar (CFG)-based coding is extended to the case of countable-context models, yielding context-dependent grammar (CDG)-based coding. Given a countable-context model, a greedy CDG transform is proposed. Based on this greedy CDG transform, two universal lossless data compression algorithms, an improved sequential context-dependent algorithm and a hierarchical context-dependent algorithm, are then developed. It is shown that these algorithms are all universal in the sense that they can achieve asymptotically the entropy rate of any stationary, ergodic source with a finite alphabet. Moreover, it is proved that these algorithms' worst case redundancies among all individual sequences of length n from a finite alphabet are upper-bounded by d log log n/log n, as long as the number of distinct contexts grows with the sequence length n in the order of O(n/sup a/), where 0 < /spl alpha/ < 1 and d are positive constants. It is further shown that for some nonstationary sources, the proposed context-dependent algorithms can achieve better expected redundancies than any existing CFG-based codes, including the Lempel-Ziv (1978) algorithm, the multilevel pattern matching algorithm, and the context-free algorithms in Part I of this series of papers.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"87 1","pages":"2874-2894"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":"{\"title\":\"Efficient universal lossless data compression algorithms based on a greedy sequential grammar transform .2. With context models\",\"authors\":\"E. Yang, Dake He\",\"doi\":\"10.1109/TIT.2003.818411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For pt. I see ibid., vol.46, p.755-88 (2000). The concept of context-free grammar (CFG)-based coding is extended to the case of countable-context models, yielding context-dependent grammar (CDG)-based coding. Given a countable-context model, a greedy CDG transform is proposed. Based on this greedy CDG transform, two universal lossless data compression algorithms, an improved sequential context-dependent algorithm and a hierarchical context-dependent algorithm, are then developed. It is shown that these algorithms are all universal in the sense that they can achieve asymptotically the entropy rate of any stationary, ergodic source with a finite alphabet. Moreover, it is proved that these algorithms' worst case redundancies among all individual sequences of length n from a finite alphabet are upper-bounded by d log log n/log n, as long as the number of distinct contexts grows with the sequence length n in the order of O(n/sup a/), where 0 < /spl alpha/ < 1 and d are positive constants. It is further shown that for some nonstationary sources, the proposed context-dependent algorithms can achieve better expected redundancies than any existing CFG-based codes, including the Lempel-Ziv (1978) algorithm, the multilevel pattern matching algorithm, and the context-free algorithms in Part I of this series of papers.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"87 1\",\"pages\":\"2874-2894\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIT.2003.818411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIT.2003.818411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

摘要

见同上,第46卷,第755-88页(2000)。将基于上下文无关语法(CFG)的编码概念扩展到可数上下文模型,从而产生基于上下文相关语法(CDG)的编码。给定一个可数上下文模型,提出一种贪婪CDG变换。基于这种贪婪CDG变换,提出了改进的顺序上下文相关算法和分层上下文相关算法两种通用的无损数据压缩算法。结果表明,这些算法都是通用性的,因为它们可以渐近地获得具有有限字母的任意平稳遍历源的熵率。此外,证明了这些算法在有限字母表中长度为n的所有单个序列之间的最坏情况冗余度上界为d log log n/log n,只要不同上下文的数量随序列长度n以O(n/sup a/)的顺序增长,其中0 < /spl alpha/ < 1和d是正常数。进一步表明,对于一些非平稳源,所提出的上下文相关算法比任何现有的基于cfg的代码(包括Lempel-Ziv(1978)算法、多层模式匹配算法和本系列论文第一部分中的上下文无关算法)都能实现更好的预期冗余。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient universal lossless data compression algorithms based on a greedy sequential grammar transform .2. With context models
For pt. I see ibid., vol.46, p.755-88 (2000). The concept of context-free grammar (CFG)-based coding is extended to the case of countable-context models, yielding context-dependent grammar (CDG)-based coding. Given a countable-context model, a greedy CDG transform is proposed. Based on this greedy CDG transform, two universal lossless data compression algorithms, an improved sequential context-dependent algorithm and a hierarchical context-dependent algorithm, are then developed. It is shown that these algorithms are all universal in the sense that they can achieve asymptotically the entropy rate of any stationary, ergodic source with a finite alphabet. Moreover, it is proved that these algorithms' worst case redundancies among all individual sequences of length n from a finite alphabet are upper-bounded by d log log n/log n, as long as the number of distinct contexts grows with the sequence length n in the order of O(n/sup a/), where 0 < /spl alpha/ < 1 and d are positive constants. It is further shown that for some nonstationary sources, the proposed context-dependent algorithms can achieve better expected redundancies than any existing CFG-based codes, including the Lempel-Ziv (1978) algorithm, the multilevel pattern matching algorithm, and the context-free algorithms in Part I of this series of papers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrections to "On the Separability of Parallel MISO Broadcast Channels Under Partial CSIT: A Degrees of Freedom Region Perspective" Efficiently Decoding Reed-Muller Codes From Random Errors Restricted q-Isometry Properties Adapted to Frames for Nonconvex lq-Analysis Distortion Rate Function of Sub-Nyquist Sampled Gaussian Sources ℓp-Regularized Least Squares (0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1