Yasser Ammar, A. Elbaset, A. Adail, Sayed El. Araby
{"title":"基于研究堆UPFC优化配置的电网独立安全可持续解决方案","authors":"Yasser Ammar, A. Elbaset, A. Adail, Sayed El. Araby","doi":"10.1515/kern-2022-0057","DOIUrl":null,"url":null,"abstract":"Abstract The dependently of the electrical grid is critical key point to safety of the nuclear research reactor (NRR) operation. This paper provides an optimization approach relying on optimal allocation of UPFC device to obtain higher electrical power quality of such nuclear facilities. The particle swarm optimization (PSO) technique was used to address the optimal UPFC allocation problem. The suggested approach is applied to the IEEE 33-bus test system, and results reveal that the suggested PSO is more efficient in minimizing total power losses and enhancing voltage profile using only one of UPFC device. The results show the technique is good method in this case.","PeriodicalId":17787,"journal":{"name":"Kerntechnik","volume":"53 1","pages":"683 - 696"},"PeriodicalIF":0.4000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sustainable solution to ensure the dependently and safety of electrical grid relying on optimal allocation of UPFC for research reactor\",\"authors\":\"Yasser Ammar, A. Elbaset, A. Adail, Sayed El. Araby\",\"doi\":\"10.1515/kern-2022-0057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The dependently of the electrical grid is critical key point to safety of the nuclear research reactor (NRR) operation. This paper provides an optimization approach relying on optimal allocation of UPFC device to obtain higher electrical power quality of such nuclear facilities. The particle swarm optimization (PSO) technique was used to address the optimal UPFC allocation problem. The suggested approach is applied to the IEEE 33-bus test system, and results reveal that the suggested PSO is more efficient in minimizing total power losses and enhancing voltage profile using only one of UPFC device. The results show the technique is good method in this case.\",\"PeriodicalId\":17787,\"journal\":{\"name\":\"Kerntechnik\",\"volume\":\"53 1\",\"pages\":\"683 - 696\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kerntechnik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/kern-2022-0057\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kerntechnik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/kern-2022-0057","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
A sustainable solution to ensure the dependently and safety of electrical grid relying on optimal allocation of UPFC for research reactor
Abstract The dependently of the electrical grid is critical key point to safety of the nuclear research reactor (NRR) operation. This paper provides an optimization approach relying on optimal allocation of UPFC device to obtain higher electrical power quality of such nuclear facilities. The particle swarm optimization (PSO) technique was used to address the optimal UPFC allocation problem. The suggested approach is applied to the IEEE 33-bus test system, and results reveal that the suggested PSO is more efficient in minimizing total power losses and enhancing voltage profile using only one of UPFC device. The results show the technique is good method in this case.
期刊介绍:
Kerntechnik is an independent journal for nuclear engineering (including design, operation, safety and economics of nuclear power stations, research reactors and simulators), energy systems, radiation (ionizing radiation in industry, medicine and research) and radiological protection (biological effects of ionizing radiation, the system of protection for occupational, medical and public exposures, the assessment of doses, operational protection and safety programs, management of radioactive wastes, decommissioning and regulatory requirements).