基于生成深度上下文的多尺度锥体多维LSTM视频目标分割

Qiurui Wang, C. Yuan
{"title":"基于生成深度上下文的多尺度锥体多维LSTM视频目标分割","authors":"Qiurui Wang, C. Yuan","doi":"10.1109/ICIP.2016.7532363","DOIUrl":null,"url":null,"abstract":"Existing deep neural networks, such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), typically treat volumetric video data as several single images and deal with one frame at one time, thus the relevance to frames can hardly be fully exploited. Besides, depth context plays the unique role in motion scenes for primates, but is seldom used in no depth label situations. In this paper, we use a more suitable architecture Multi-Scale Pyramidal Multi-Dimensional Long Short Term Memory (MSPMD-LSTM) to reveal the strong relevance within video frames. Furthermore, depth context is extracted and refined to enhance the performance of the model. Experiments demonstrate that our models yield competitive results on Youtube-Objects dataset and Segtrack v2 dataset.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"115 1","pages":"281-285"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Video object segmentation by Multi-Scale Pyramidal Multi-Dimensional LSTM with generated depth context\",\"authors\":\"Qiurui Wang, C. Yuan\",\"doi\":\"10.1109/ICIP.2016.7532363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing deep neural networks, such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), typically treat volumetric video data as several single images and deal with one frame at one time, thus the relevance to frames can hardly be fully exploited. Besides, depth context plays the unique role in motion scenes for primates, but is seldom used in no depth label situations. In this paper, we use a more suitable architecture Multi-Scale Pyramidal Multi-Dimensional Long Short Term Memory (MSPMD-LSTM) to reveal the strong relevance within video frames. Furthermore, depth context is extracted and refined to enhance the performance of the model. Experiments demonstrate that our models yield competitive results on Youtube-Objects dataset and Segtrack v2 dataset.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"115 1\",\"pages\":\"281-285\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现有的深度神经网络,如卷积神经网络(cnn)和递归神经网络(rnn),通常将体积视频数据视为几张单个图像,一次处理一帧,因此很难充分利用与帧的相关性。此外,深度上下文在灵长类动物的运动场景中发挥着独特的作用,但在没有深度标签的情况下很少使用。在本文中,我们使用了一个更合适的多尺度金字塔多维长短期记忆(MSPMD-LSTM)架构来揭示视频帧内的强相关性。进一步,对深度上下文进行提取和细化,以提高模型的性能。实验表明,我们的模型在Youtube-Objects数据集和Segtrack v2数据集上产生了具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Video object segmentation by Multi-Scale Pyramidal Multi-Dimensional LSTM with generated depth context
Existing deep neural networks, such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), typically treat volumetric video data as several single images and deal with one frame at one time, thus the relevance to frames can hardly be fully exploited. Besides, depth context plays the unique role in motion scenes for primates, but is seldom used in no depth label situations. In this paper, we use a more suitable architecture Multi-Scale Pyramidal Multi-Dimensional Long Short Term Memory (MSPMD-LSTM) to reveal the strong relevance within video frames. Furthermore, depth context is extracted and refined to enhance the performance of the model. Experiments demonstrate that our models yield competitive results on Youtube-Objects dataset and Segtrack v2 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-adaptive pyramid representation for 3D object classification Automating the measurement of physiological parameters: A case study in the image analysis of cilia motion Horizon based orientation estimation for planetary surface navigation Softcast with per-carrier power-constrained channels Speeding-up a convolutional neural network by connecting an SVM network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1