Longjie Ji, Shengyong Lu, Cuicui Du, Xiaodong Li, A. Buekens, Jian-hua Yan
{"title":"在商用V2O5-WO3/纳米tio2催化剂上氧化1,2 -二氯苯:HCl加入的影响","authors":"Longjie Ji, Shengyong Lu, Cuicui Du, Xiaodong Li, A. Buekens, Jian-hua Yan","doi":"10.1515/jaots-2016-0169","DOIUrl":null,"url":null,"abstract":"Abstract: The effect of various parameters on the catalytic oxidation of 1,2-dichlorobenzene (1,2-DCBz) present in simulated flue gas was investigated. A commercial V2O5-WO3/nano-TiO2 catalyst was used and characterized by X-ray diffraction (XRD), N2-physisorption and energy dispersive spectrometer (EDS). The 1,2-DCBz conversion efficiency was increased significantly with higher temperature and lower gas hourly space velocity (GHSV). Different influence levels of HCl on catalytic oxidation were found at lower and higher GHSV. The influence of HCl is irreversible due to the formation of volatile metal oxidochlorides, resulting in a decrease of the number of active sites.","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Oxidation of 1, 2-dichlorobenzene on a commercial V2O5-WO3/nano-TiO2 catalyst: Effect of HCl addition\",\"authors\":\"Longjie Ji, Shengyong Lu, Cuicui Du, Xiaodong Li, A. Buekens, Jian-hua Yan\",\"doi\":\"10.1515/jaots-2016-0169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: The effect of various parameters on the catalytic oxidation of 1,2-dichlorobenzene (1,2-DCBz) present in simulated flue gas was investigated. A commercial V2O5-WO3/nano-TiO2 catalyst was used and characterized by X-ray diffraction (XRD), N2-physisorption and energy dispersive spectrometer (EDS). The 1,2-DCBz conversion efficiency was increased significantly with higher temperature and lower gas hourly space velocity (GHSV). Different influence levels of HCl on catalytic oxidation were found at lower and higher GHSV. The influence of HCl is irreversible due to the formation of volatile metal oxidochlorides, resulting in a decrease of the number of active sites.\",\"PeriodicalId\":14870,\"journal\":{\"name\":\"Journal of Advanced Oxidation Technologies\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Oxidation Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jaots-2016-0169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jaots-2016-0169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
Oxidation of 1, 2-dichlorobenzene on a commercial V2O5-WO3/nano-TiO2 catalyst: Effect of HCl addition
Abstract: The effect of various parameters on the catalytic oxidation of 1,2-dichlorobenzene (1,2-DCBz) present in simulated flue gas was investigated. A commercial V2O5-WO3/nano-TiO2 catalyst was used and characterized by X-ray diffraction (XRD), N2-physisorption and energy dispersive spectrometer (EDS). The 1,2-DCBz conversion efficiency was increased significantly with higher temperature and lower gas hourly space velocity (GHSV). Different influence levels of HCl on catalytic oxidation were found at lower and higher GHSV. The influence of HCl is irreversible due to the formation of volatile metal oxidochlorides, resulting in a decrease of the number of active sites.
期刊介绍:
The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs