S. Roselli, Fredrik Hagebring, Sarmad Riazi, Martin Fabian, K. Åkesson
{"title":"最优和次最优箱盖的等价类的应用","authors":"S. Roselli, Fredrik Hagebring, Sarmad Riazi, Martin Fabian, K. Åkesson","doi":"10.1109/COASE.2019.8843323","DOIUrl":null,"url":null,"abstract":"Bin covering is an important optimization problem in many industrial fields, such as packaging, recycling, and food processing. The problem concerns a set of items, each with its own value, that are to be collected into bins in such a way that the total value of each bin, as measured by the sum of its item values, is not lower than a target value. The optimization problem concerns maximizing the number of bins. This is a combinatorial NP-hard problem, for which true optimal solutions can only be calculated in specific cases, such as when restricted to a small number of items. To get around this problem, many suboptimal approaches exist. This paper describes a formulation of the bin covering that allows to find the true optimum for a rather large number of items, over 1000. Also presented is a suboptimal solution, which is compared to the true optimum and found to come within less than 10% of the optimum.","PeriodicalId":6695,"journal":{"name":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","volume":"29 8 1","pages":"1004-1009"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Use of Equivalence Classes for Optimal and Sub-Optimal Bin Covering\",\"authors\":\"S. Roselli, Fredrik Hagebring, Sarmad Riazi, Martin Fabian, K. Åkesson\",\"doi\":\"10.1109/COASE.2019.8843323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bin covering is an important optimization problem in many industrial fields, such as packaging, recycling, and food processing. The problem concerns a set of items, each with its own value, that are to be collected into bins in such a way that the total value of each bin, as measured by the sum of its item values, is not lower than a target value. The optimization problem concerns maximizing the number of bins. This is a combinatorial NP-hard problem, for which true optimal solutions can only be calculated in specific cases, such as when restricted to a small number of items. To get around this problem, many suboptimal approaches exist. This paper describes a formulation of the bin covering that allows to find the true optimum for a rather large number of items, over 1000. Also presented is a suboptimal solution, which is compared to the true optimum and found to come within less than 10% of the optimum.\",\"PeriodicalId\":6695,\"journal\":{\"name\":\"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"29 8 1\",\"pages\":\"1004-1009\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2019.8843323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2019.8843323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Use of Equivalence Classes for Optimal and Sub-Optimal Bin Covering
Bin covering is an important optimization problem in many industrial fields, such as packaging, recycling, and food processing. The problem concerns a set of items, each with its own value, that are to be collected into bins in such a way that the total value of each bin, as measured by the sum of its item values, is not lower than a target value. The optimization problem concerns maximizing the number of bins. This is a combinatorial NP-hard problem, for which true optimal solutions can only be calculated in specific cases, such as when restricted to a small number of items. To get around this problem, many suboptimal approaches exist. This paper describes a formulation of the bin covering that allows to find the true optimum for a rather large number of items, over 1000. Also presented is a suboptimal solution, which is compared to the true optimum and found to come within less than 10% of the optimum.