番茄酱GAN:一个用于食品上字母真实合成的新数据集

Gibran Benitez-Garcia, Keiji Yanai
{"title":"番茄酱GAN:一个用于食品上字母真实合成的新数据集","authors":"Gibran Benitez-Garcia, Keiji Yanai","doi":"10.1145/3463946.3469241","DOIUrl":null,"url":null,"abstract":"This paper introduces a new dataset for the realistic synthesis of letters on food. Specifically, the \"Ketchup GAN\" dataset consists of real-world images of egg omelettes decorated with ketchup letters. Our dataset contains sufficient size and variety to train and evaluate deep learning-based generative models. In addition, we generate a synthetic ketchup-free set, which enables us to train paired-based generative adversarial networks (GAN). The ketchup GAN dataset comprises more than two thousand images of omelette dishes collected from Twitter. Automatically generated segmentation masks of egg and ketchup are also provided as part of the dataset. Thus, we can evaluate generative models based on segmentation inputs as well. With our dataset, two state-of-the-art GAN models (Pix2Pix and SPADE) are reviewed on photorealistic ketchup letter synthesis. We finally present an automatic application of omelette decoration with ketchup text input from users. The dataset and more details are publicly available at https://mm.cs.uec.ac.jp/omrice/.","PeriodicalId":43265,"journal":{"name":"International Journal of Mobile Computing and Multimedia Communications","volume":"90 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ketchup GAN: A New Dataset for Realistic Synthesis of Letters on Food\",\"authors\":\"Gibran Benitez-Garcia, Keiji Yanai\",\"doi\":\"10.1145/3463946.3469241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new dataset for the realistic synthesis of letters on food. Specifically, the \\\"Ketchup GAN\\\" dataset consists of real-world images of egg omelettes decorated with ketchup letters. Our dataset contains sufficient size and variety to train and evaluate deep learning-based generative models. In addition, we generate a synthetic ketchup-free set, which enables us to train paired-based generative adversarial networks (GAN). The ketchup GAN dataset comprises more than two thousand images of omelette dishes collected from Twitter. Automatically generated segmentation masks of egg and ketchup are also provided as part of the dataset. Thus, we can evaluate generative models based on segmentation inputs as well. With our dataset, two state-of-the-art GAN models (Pix2Pix and SPADE) are reviewed on photorealistic ketchup letter synthesis. We finally present an automatic application of omelette decoration with ketchup text input from users. The dataset and more details are publicly available at https://mm.cs.uec.ac.jp/omrice/.\",\"PeriodicalId\":43265,\"journal\":{\"name\":\"International Journal of Mobile Computing and Multimedia Communications\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mobile Computing and Multimedia Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3463946.3469241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mobile Computing and Multimedia Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3463946.3469241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了一种用于食品字母真实合成的新数据集。具体来说,“Ketchup GAN”数据集由用番茄酱字母装饰的蛋卷的真实图像组成。我们的数据集包含足够的大小和种类来训练和评估基于深度学习的生成模型。此外,我们生成了一个合成的无番茄酱集,这使我们能够训练基于配对的生成对抗网络(GAN)。番茄酱GAN数据集包括从推特上收集的2000多张煎蛋卷图片。自动生成的鸡蛋和番茄酱的分割掩码也作为数据集的一部分提供。因此,我们也可以评估基于分割输入的生成模型。利用我们的数据集,回顾了两种最先进的GAN模型(Pix2Pix和SPADE)在逼真的番茄酱字母合成上的应用。最后给出了一个用户输入番茄酱文字装饰煎蛋卷的自动应用。数据集和更多细节可在https://mm.cs.uec.ac.jp/omrice/上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ketchup GAN: A New Dataset for Realistic Synthesis of Letters on Food
This paper introduces a new dataset for the realistic synthesis of letters on food. Specifically, the "Ketchup GAN" dataset consists of real-world images of egg omelettes decorated with ketchup letters. Our dataset contains sufficient size and variety to train and evaluate deep learning-based generative models. In addition, we generate a synthetic ketchup-free set, which enables us to train paired-based generative adversarial networks (GAN). The ketchup GAN dataset comprises more than two thousand images of omelette dishes collected from Twitter. Automatically generated segmentation masks of egg and ketchup are also provided as part of the dataset. Thus, we can evaluate generative models based on segmentation inputs as well. With our dataset, two state-of-the-art GAN models (Pix2Pix and SPADE) are reviewed on photorealistic ketchup letter synthesis. We finally present an automatic application of omelette decoration with ketchup text input from users. The dataset and more details are publicly available at https://mm.cs.uec.ac.jp/omrice/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
16.70%
发文量
23
期刊最新文献
Biometric Authentication Methods on Mobile Platforms Reverse Chronology: The Nature of News Stories——Based on the Investigation of the Typical Reports of the Model of the Times Design of Accounting Information System Based on Computer Network Challenges and Solutions for Network Security in Data Centers Driven by Information Technology Using Eye Tracking to Measure Overall Usability of Online Grocery Shopping Websites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1