基于深度学习方法的皮肤病变分类

E. Shchetinin, A. V. Demidova, D. Kulyabov, L. A. Sevastyanov
{"title":"基于深度学习方法的皮肤病变分类","authors":"E. Shchetinin, A. V. Demidova, D. Kulyabov, L. A. Sevastyanov","doi":"10.17537/2020.15.180","DOIUrl":null,"url":null,"abstract":"\n In this paper, we propose an approach to solving the problem of recognizing skin lesions, namely melanoma, based on the analysis of dermoscopic images using deep learning methods. For this purpose, the architecture of a deep convolutional neural network was developed, which was applied to the processing of dermoscopic images of various skin lesions contained in the HAM10000 data set. The data under study were preprocessed to eliminate noise, contamination, and change the size and format of images. In addition, since the disease classes are unbalanced, a number of transformations were performed to balance them. The data obtained in this way were divided into two classes: Melanoma and Benign. Computer experiments using the built deep neural network based on the data obtained in this way have shown that the proposed approach provides 94% accuracy on the test sample, which exceeds similar results obtained by other algorithms.\n","PeriodicalId":53525,"journal":{"name":"Mathematical Biology and Bioinformatics","volume":"94 1","pages":"180-194"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Skin Lesion Classification Using Deep Learning Methods\",\"authors\":\"E. Shchetinin, A. V. Demidova, D. Kulyabov, L. A. Sevastyanov\",\"doi\":\"10.17537/2020.15.180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we propose an approach to solving the problem of recognizing skin lesions, namely melanoma, based on the analysis of dermoscopic images using deep learning methods. For this purpose, the architecture of a deep convolutional neural network was developed, which was applied to the processing of dermoscopic images of various skin lesions contained in the HAM10000 data set. The data under study were preprocessed to eliminate noise, contamination, and change the size and format of images. In addition, since the disease classes are unbalanced, a number of transformations were performed to balance them. The data obtained in this way were divided into two classes: Melanoma and Benign. Computer experiments using the built deep neural network based on the data obtained in this way have shown that the proposed approach provides 94% accuracy on the test sample, which exceeds similar results obtained by other algorithms.\\n\",\"PeriodicalId\":53525,\"journal\":{\"name\":\"Mathematical Biology and Bioinformatics\",\"volume\":\"94 1\",\"pages\":\"180-194\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biology and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17537/2020.15.180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17537/2020.15.180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一种基于深度学习方法对皮肤镜图像进行分析的方法来解决皮肤病变即黑色素瘤的识别问题。为此,开发了深度卷积神经网络架构,并将其应用于HAM10000数据集中包含的各种皮肤病变的皮肤镜图像的处理。对研究数据进行预处理,以消除噪声、污染,并改变图像的大小和格式。此外,由于疾病类别是不平衡的,因此执行了许多转换来平衡它们。以这种方式获得的数据分为两类:黑色素瘤和良性。利用基于这种方法获得的数据构建的深度神经网络进行计算机实验表明,该方法在测试样本上提供了94%的准确率,超过了其他算法所获得的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Skin Lesion Classification Using Deep Learning Methods
In this paper, we propose an approach to solving the problem of recognizing skin lesions, namely melanoma, based on the analysis of dermoscopic images using deep learning methods. For this purpose, the architecture of a deep convolutional neural network was developed, which was applied to the processing of dermoscopic images of various skin lesions contained in the HAM10000 data set. The data under study were preprocessed to eliminate noise, contamination, and change the size and format of images. In addition, since the disease classes are unbalanced, a number of transformations were performed to balance them. The data obtained in this way were divided into two classes: Melanoma and Benign. Computer experiments using the built deep neural network based on the data obtained in this way have shown that the proposed approach provides 94% accuracy on the test sample, which exceeds similar results obtained by other algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biology and Bioinformatics
Mathematical Biology and Bioinformatics Mathematics-Applied Mathematics
CiteScore
1.10
自引率
0.00%
发文量
13
期刊最新文献
Modeling Growth and Photoadaptation of Porphyridium purpureum Batch Culture Mathematical Modeling of the Initial Period of Spread of HIV-1 Infection in the Lymphatic Node Mathematical Model of Closed Microecosystem “Algae – Heterotrophic Bacteria” Using a Drug Repurposing Strategy to Virtually Screen Potential HIV-1 Entry Inhibitors That Block the NHR Domain of the Viral Envelope Protein gp41 Applying Laplace Transformation on Epidemiological Models as Caputo Derivatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1