海报:在GPU上加速BLAST Hydro Code

Tingxing Dong, T. Kolev, R. Rieben, V. Dobrev
{"title":"海报:在GPU上加速BLAST Hydro Code","authors":"Tingxing Dong, T. Kolev, R. Rieben, V. Dobrev","doi":"10.1109/SC.Companion.2012.172","DOIUrl":null,"url":null,"abstract":"The BLAST code implements a high-order numerical algorithm that solves the equations of compressible hydrodynamics using the Finite Element Method in a moving Lagrangian frame. BLAST is coded in C++ and parallelized by MPI. We accelerate the most computationally intensive parts (80%-95%) of BLAST on an NVIDIA GPU with the CUDA programming model. Several 2D and 3D problems were tested and a maximum speedup of 4.3x was delivered. Our results demonstrate the validity and capability of GPU computing.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"53 1","pages":"1337-1337"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Poster: Acceleration of the BLAST Hydro Code on GPU\",\"authors\":\"Tingxing Dong, T. Kolev, R. Rieben, V. Dobrev\",\"doi\":\"10.1109/SC.Companion.2012.172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The BLAST code implements a high-order numerical algorithm that solves the equations of compressible hydrodynamics using the Finite Element Method in a moving Lagrangian frame. BLAST is coded in C++ and parallelized by MPI. We accelerate the most computationally intensive parts (80%-95%) of BLAST on an NVIDIA GPU with the CUDA programming model. Several 2D and 3D problems were tested and a maximum speedup of 4.3x was delivered. Our results demonstrate the validity and capability of GPU computing.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"53 1\",\"pages\":\"1337-1337\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.Companion.2012.172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

BLAST代码实现了一个高阶数值算法,该算法在移动拉格朗日坐标系中使用有限元法求解可压缩流体动力学方程。BLAST是用c++编写的,并通过MPI进行并行化。我们使用CUDA编程模型在NVIDIA GPU上加速了BLAST中计算最密集的部分(80%-95%)。测试了几个2D和3D问题,并提供了4.3倍的最大加速。我们的结果证明了GPU计算的有效性和能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Poster: Acceleration of the BLAST Hydro Code on GPU
The BLAST code implements a high-order numerical algorithm that solves the equations of compressible hydrodynamics using the Finite Element Method in a moving Lagrangian frame. BLAST is coded in C++ and parallelized by MPI. We accelerate the most computationally intensive parts (80%-95%) of BLAST on an NVIDIA GPU with the CUDA programming model. Several 2D and 3D problems were tested and a maximum speedup of 4.3x was delivered. Our results demonstrate the validity and capability of GPU computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Computing and Networking: Select Proceedings of CHSN 2021 High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations Abstract: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation Poster: Memory-Conscious Collective I/O for Extreme-Scale HPC Systems Abstract: Virtual Machine Packing Algorithms for Lower Power Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1