跟踪移动假设的视觉数据与显式开关检测

J. Rhinelander, P. X. Liu
{"title":"跟踪移动假设的视觉数据与显式开关检测","authors":"J. Rhinelander, P. X. Liu","doi":"10.1109/CISDA.2009.5356547","DOIUrl":null,"url":null,"abstract":"The use of support vector (SV) methods has been successful in many areas involving pattern recognition. Video surveillance requires pattern recognition algorithms that are efficient in their operation, and requires the use of online processing for the detection and identification of events, objects, and behaviours. To successfully use SV methods in video surveillance, on-line training methods must be employed; NORMA [1] is one such training method. A video surveillance system represents a dynamic system with non-stationary characteristics. It is the purpose of our work to enhance NORMA to better adapt to sudden changes (switches) in the surveillance environment. We show that the decision hypothesis that NORMA generates is more accurate when a switch in the data is explicitly detected and managed. Our preliminary testing involves simulated data, real world benchmark data, and real video data captured from a digital camera.","PeriodicalId":6407,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","volume":"38 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tracking a moving hypothesis for visual data with explicit switch detection\",\"authors\":\"J. Rhinelander, P. X. Liu\",\"doi\":\"10.1109/CISDA.2009.5356547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of support vector (SV) methods has been successful in many areas involving pattern recognition. Video surveillance requires pattern recognition algorithms that are efficient in their operation, and requires the use of online processing for the detection and identification of events, objects, and behaviours. To successfully use SV methods in video surveillance, on-line training methods must be employed; NORMA [1] is one such training method. A video surveillance system represents a dynamic system with non-stationary characteristics. It is the purpose of our work to enhance NORMA to better adapt to sudden changes (switches) in the surveillance environment. We show that the decision hypothesis that NORMA generates is more accurate when a switch in the data is explicitly detected and managed. Our preliminary testing involves simulated data, real world benchmark data, and real video data captured from a digital camera.\",\"PeriodicalId\":6407,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications\",\"volume\":\"38 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISDA.2009.5356547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISDA.2009.5356547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

支持向量(SV)方法在模式识别的许多领域都取得了成功。视频监控需要高效的模式识别算法,并且需要使用在线处理来检测和识别事件、对象和行为。为了在视频监控中成功应用SV方法,必须采用在线培训方法;NORMA[1]就是这样一种训练方法。视频监控系统是一个具有非平稳特性的动态系统。增强NORMA以更好地适应监视环境中的突然变化(开关)是我们工作的目的。我们表明,当显式检测和管理数据中的开关时,NORMA生成的决策假设更准确。我们的初步测试包括模拟数据、真实世界基准数据和从数码相机捕获的真实视频数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tracking a moving hypothesis for visual data with explicit switch detection
The use of support vector (SV) methods has been successful in many areas involving pattern recognition. Video surveillance requires pattern recognition algorithms that are efficient in their operation, and requires the use of online processing for the detection and identification of events, objects, and behaviours. To successfully use SV methods in video surveillance, on-line training methods must be employed; NORMA [1] is one such training method. A video surveillance system represents a dynamic system with non-stationary characteristics. It is the purpose of our work to enhance NORMA to better adapt to sudden changes (switches) in the surveillance environment. We show that the decision hypothesis that NORMA generates is more accurate when a switch in the data is explicitly detected and managed. Our preliminary testing involves simulated data, real world benchmark data, and real video data captured from a digital camera.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolving spiking neural networks: A novel growth algorithm corrects the teacher Emitter geolocation using low-accuracy direction-finding sensors Secure two and multi-party association rule mining Passive multitarget tracking using transmitters of opportunity Bias phenomenon and analysis of a nonlinear transformation in a mobile passive sensor network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1