通过分解动力学组件来识别动作

Yue Zhao, Yuanjun Xiong, Dahua Lin
{"title":"通过分解动力学组件来识别动作","authors":"Yue Zhao, Yuanjun Xiong, Dahua Lin","doi":"10.1109/CVPR.2018.00687","DOIUrl":null,"url":null,"abstract":"Despite the remarkable progress in action recognition over the past several years, existing methods remain limited in efficiency and effectiveness. The methods treating appearance and motion as separate streams are usually subject to the cost of optical flow computation, while those relying on 3D convolution on the original video frames often yield inferior performance in practice. In this paper, we propose a new ConvNet architecture for video representation learning, which can derive disentangled components of dynamics purely from raw video frames, without the need of optical flow estimation. Particularly, the learned representation comprises three components for representing static appearance, apparent motion, and appearance changes. We introduce 3D pooling, cost volume processing, and warped feature differences, respectively for extracting the three components above. These modules are incorporated as three branches in our unified network, which share the underlying features and are learned jointly in an end-to-end manner. On two large datasets, UCF101 [22] and Kinetics [16], our method obtained competitive performances with high efficiency, using only the RGB frame sequence as input.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"27 1","pages":"6566-6575"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Recognize Actions by Disentangling Components of Dynamics\",\"authors\":\"Yue Zhao, Yuanjun Xiong, Dahua Lin\",\"doi\":\"10.1109/CVPR.2018.00687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the remarkable progress in action recognition over the past several years, existing methods remain limited in efficiency and effectiveness. The methods treating appearance and motion as separate streams are usually subject to the cost of optical flow computation, while those relying on 3D convolution on the original video frames often yield inferior performance in practice. In this paper, we propose a new ConvNet architecture for video representation learning, which can derive disentangled components of dynamics purely from raw video frames, without the need of optical flow estimation. Particularly, the learned representation comprises three components for representing static appearance, apparent motion, and appearance changes. We introduce 3D pooling, cost volume processing, and warped feature differences, respectively for extracting the three components above. These modules are incorporated as three branches in our unified network, which share the underlying features and are learned jointly in an end-to-end manner. On two large datasets, UCF101 [22] and Kinetics [16], our method obtained competitive performances with high efficiency, using only the RGB frame sequence as input.\",\"PeriodicalId\":6564,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"volume\":\"27 1\",\"pages\":\"6566-6575\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

尽管过去几年在行动确认方面取得了显著进展,但现有方法在效率和效力方面仍然有限。将外观和运动作为独立流处理的方法通常会受到光流计算成本的影响,而那些依赖于原始视频帧的3D卷积的方法在实践中往往会产生较差的性能。在本文中,我们提出了一种新的用于视频表示学习的卷积神经网络架构,该架构可以完全从原始视频帧中导出解纠缠的动态分量,而不需要光流估计。特别地,学习表征包括三个组成部分,分别表示静态外观、表观运动和外观变化。我们分别引入3D池、成本体积处理和扭曲特征差异来提取上述三个组件。这些模块被合并为我们统一网络中的三个分支,它们共享底层特征,并以端到端方式共同学习。在UCF101[22]和Kinetics[16]两个大型数据集上,我们的方法仅使用RGB帧序列作为输入,就以高效率获得了具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recognize Actions by Disentangling Components of Dynamics
Despite the remarkable progress in action recognition over the past several years, existing methods remain limited in efficiency and effectiveness. The methods treating appearance and motion as separate streams are usually subject to the cost of optical flow computation, while those relying on 3D convolution on the original video frames often yield inferior performance in practice. In this paper, we propose a new ConvNet architecture for video representation learning, which can derive disentangled components of dynamics purely from raw video frames, without the need of optical flow estimation. Particularly, the learned representation comprises three components for representing static appearance, apparent motion, and appearance changes. We introduce 3D pooling, cost volume processing, and warped feature differences, respectively for extracting the three components above. These modules are incorporated as three branches in our unified network, which share the underlying features and are learned jointly in an end-to-end manner. On two large datasets, UCF101 [22] and Kinetics [16], our method obtained competitive performances with high efficiency, using only the RGB frame sequence as input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multistage Adversarial Losses for Pose-Based Human Image Synthesis Document Enhancement Using Visibility Detection Demo2Vec: Reasoning Object Affordances from Online Videos Planar Shape Detection at Structural Scales Where and Why are They Looking? Jointly Inferring Human Attention and Intentions in Complex Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1