一种基于主动学习的增强类别检测方法

Hao Huang, Shuoping Wang, Lianhang Ma
{"title":"一种基于主动学习的增强类别检测方法","authors":"Hao Huang, Shuoping Wang, Lianhang Ma","doi":"10.1109/ISKE.2010.5680880","DOIUrl":null,"url":null,"abstract":"Identification of useful anomalies is an emerging task in active learning scenario. It plays the central roles in category detection in which one can using a sampling approach to label a data from rare category in an unlabeled date set by the help of the oracle who has a small querying budget. This paper presents an enhanced category detection that improves previous research work which leans to cost more querying budget. The new approach takes full advantage of the feedback of the oracle, and reduces the querying times. Experimental results on both synthetic and real data sets are effective and low-cost.","PeriodicalId":6417,"journal":{"name":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","volume":"5 1","pages":"224-227"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An enhanced category detection based on active learning\",\"authors\":\"Hao Huang, Shuoping Wang, Lianhang Ma\",\"doi\":\"10.1109/ISKE.2010.5680880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identification of useful anomalies is an emerging task in active learning scenario. It plays the central roles in category detection in which one can using a sampling approach to label a data from rare category in an unlabeled date set by the help of the oracle who has a small querying budget. This paper presents an enhanced category detection that improves previous research work which leans to cost more querying budget. The new approach takes full advantage of the feedback of the oracle, and reduces the querying times. Experimental results on both synthetic and real data sets are effective and low-cost.\",\"PeriodicalId\":6417,\"journal\":{\"name\":\"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering\",\"volume\":\"5 1\",\"pages\":\"224-227\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE.2010.5680880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2010.5680880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在主动学习场景中,有用异常的识别是一个新兴的任务。它在类别检测中起着核心作用,其中可以使用抽样方法在具有少量查询预算的oracle的帮助下,在未标记日期集中标记来自罕见类别的数据。本文提出了一种改进的类别检测方法,改进了以往的研究工作,使其更倾向于花费更多的时间查询预算。该方法充分利用了oracle的反馈功能,减少了查询次数。在合成数据集和真实数据集上的实验结果都是有效和低成本的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An enhanced category detection based on active learning
Identification of useful anomalies is an emerging task in active learning scenario. It plays the central roles in category detection in which one can using a sampling approach to label a data from rare category in an unlabeled date set by the help of the oracle who has a small querying budget. This paper presents an enhanced category detection that improves previous research work which leans to cost more querying budget. The new approach takes full advantage of the feedback of the oracle, and reduces the querying times. Experimental results on both synthetic and real data sets are effective and low-cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applying B and ProB to a Real-world Data Validation Project A Method of Point Cloud Processing in Transformer Substation Computational Task Offloading Scheme based on Deep Learning for Financial Big Data A Feasible System of Automatic Flame Detection and Tracking for Fire-fighting Robot Design of Parallel Algorithm of Transfer Learning based on Weak Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1