大数据?纵向数据的大问题退化及其对社会科学的影响

Matthew S. Weber, Hai Nguyen
{"title":"大数据?纵向数据的大问题退化及其对社会科学的影响","authors":"Matthew S. Weber, Hai Nguyen","doi":"10.1145/2786451.2786482","DOIUrl":null,"url":null,"abstract":"This article analyzes the issue of degradation of data accuracy in large-scale longitudinal data sets. Recent research points to a number of issues with large-scale data, including problems of reliability, accuracy and quality over time. Simultaneously, large-scale data is increasingly being utilized in the social sciences. As scholars work to produce theoretically grounded research utilized \"small-scale\" methods, it is important for researchers to better understand the critical issues associated with the analysis of large-scale data. In order to illustrate the issues associated with this type of research, a case study analysis of archival Internet data is presented focusing on the issues of degradation of data accuracy over time. Suggestions for future studies are given.","PeriodicalId":93136,"journal":{"name":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Big Data?: Big Issues Degradation in Longitudinal Data and Implications for Social Sciences\",\"authors\":\"Matthew S. Weber, Hai Nguyen\",\"doi\":\"10.1145/2786451.2786482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article analyzes the issue of degradation of data accuracy in large-scale longitudinal data sets. Recent research points to a number of issues with large-scale data, including problems of reliability, accuracy and quality over time. Simultaneously, large-scale data is increasingly being utilized in the social sciences. As scholars work to produce theoretically grounded research utilized \\\"small-scale\\\" methods, it is important for researchers to better understand the critical issues associated with the analysis of large-scale data. In order to illustrate the issues associated with this type of research, a case study analysis of archival Internet data is presented focusing on the issues of degradation of data accuracy over time. Suggestions for future studies are given.\",\"PeriodicalId\":93136,\"journal\":{\"name\":\"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2786451.2786482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2786451.2786482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文分析了大规模纵向数据集中数据精度下降的问题。最近的研究指出了大量数据的一些问题,包括随着时间推移的可靠性、准确性和质量问题。与此同时,大规模数据越来越多地用于社会科学。当学者们利用“小规模”方法进行理论研究时,研究人员更好地理解与大规模数据分析相关的关键问题是很重要的。为了说明与这类研究相关的问题,本文提出了一个档案互联网数据的案例研究分析,重点关注数据准确性随时间退化的问题。并对今后的研究提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Big Data?: Big Issues Degradation in Longitudinal Data and Implications for Social Sciences
This article analyzes the issue of degradation of data accuracy in large-scale longitudinal data sets. Recent research points to a number of issues with large-scale data, including problems of reliability, accuracy and quality over time. Simultaneously, large-scale data is increasingly being utilized in the social sciences. As scholars work to produce theoretically grounded research utilized "small-scale" methods, it is important for researchers to better understand the critical issues associated with the analysis of large-scale data. In order to illustrate the issues associated with this type of research, a case study analysis of archival Internet data is presented focusing on the issues of degradation of data accuracy over time. Suggestions for future studies are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opinions on Homeopathy for COVID-19 on Twitter. An Initial Study of Depression Detection on Mandarin Textual through BERT Model WebSci '22: 14th ACM Web Science Conference 2022, Barcelona, Spain, June 26 - 29, 2022 WebSci '21: 13th ACM Web Science Conference 2021, Virtual Event, United Kingdom, 21-25 June, 2021, Companion Publication In conversation with Martha Lane Fox and Wendy Hall on the Future of the Internet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1