{"title":"多元回归动态模型","authors":"C. Queen, Jim Q. Smith","doi":"10.1111/J.2517-6161.1993.TB01945.X","DOIUrl":null,"url":null,"abstract":"Multiregression dynamic models are defined to preserve certain conditional independence structures over time across a multivariate the series. They are non-Gaussian and yet they can often be updated in closed form. The first two moments of their one-step-ahead forecast distribution can tie easily calculated. Furthermore, they can be built to contain all the features of the univariate dynamic linear model and promise more efficient identification of causal structures in a time series than has been possible in the past","PeriodicalId":17425,"journal":{"name":"Journal of the royal statistical society series b-methodological","volume":"71 1","pages":"849-870"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Multiregression dynamic models\",\"authors\":\"C. Queen, Jim Q. Smith\",\"doi\":\"10.1111/J.2517-6161.1993.TB01945.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiregression dynamic models are defined to preserve certain conditional independence structures over time across a multivariate the series. They are non-Gaussian and yet they can often be updated in closed form. The first two moments of their one-step-ahead forecast distribution can tie easily calculated. Furthermore, they can be built to contain all the features of the univariate dynamic linear model and promise more efficient identification of causal structures in a time series than has been possible in the past\",\"PeriodicalId\":17425,\"journal\":{\"name\":\"Journal of the royal statistical society series b-methodological\",\"volume\":\"71 1\",\"pages\":\"849-870\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the royal statistical society series b-methodological\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/J.2517-6161.1993.TB01945.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the royal statistical society series b-methodological","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.2517-6161.1993.TB01945.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiregression dynamic models are defined to preserve certain conditional independence structures over time across a multivariate the series. They are non-Gaussian and yet they can often be updated in closed form. The first two moments of their one-step-ahead forecast distribution can tie easily calculated. Furthermore, they can be built to contain all the features of the univariate dynamic linear model and promise more efficient identification of causal structures in a time series than has been possible in the past