多元回归动态模型

C. Queen, Jim Q. Smith
{"title":"多元回归动态模型","authors":"C. Queen, Jim Q. Smith","doi":"10.1111/J.2517-6161.1993.TB01945.X","DOIUrl":null,"url":null,"abstract":"Multiregression dynamic models are defined to preserve certain conditional independence structures over time across a multivariate the series. They are non-Gaussian and yet they can often be updated in closed form. The first two moments of their one-step-ahead forecast distribution can tie easily calculated. Furthermore, they can be built to contain all the features of the univariate dynamic linear model and promise more efficient identification of causal structures in a time series than has been possible in the past","PeriodicalId":17425,"journal":{"name":"Journal of the royal statistical society series b-methodological","volume":"71 1","pages":"849-870"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Multiregression dynamic models\",\"authors\":\"C. Queen, Jim Q. Smith\",\"doi\":\"10.1111/J.2517-6161.1993.TB01945.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiregression dynamic models are defined to preserve certain conditional independence structures over time across a multivariate the series. They are non-Gaussian and yet they can often be updated in closed form. The first two moments of their one-step-ahead forecast distribution can tie easily calculated. Furthermore, they can be built to contain all the features of the univariate dynamic linear model and promise more efficient identification of causal structures in a time series than has been possible in the past\",\"PeriodicalId\":17425,\"journal\":{\"name\":\"Journal of the royal statistical society series b-methodological\",\"volume\":\"71 1\",\"pages\":\"849-870\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the royal statistical society series b-methodological\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/J.2517-6161.1993.TB01945.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the royal statistical society series b-methodological","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.2517-6161.1993.TB01945.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

摘要

定义多元回归动态模型是为了在多变量序列中随时间保持一定的条件独立结构。它们是非高斯的,但它们经常可以以封闭形式更新。其超前一步预测分布的前两个时刻可以很容易地计算出来。此外,它们可以被构建为包含单变量动态线性模型的所有特征,并承诺比过去更有效地识别时间序列中的因果结构
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiregression dynamic models
Multiregression dynamic models are defined to preserve certain conditional independence structures over time across a multivariate the series. They are non-Gaussian and yet they can often be updated in closed form. The first two moments of their one-step-ahead forecast distribution can tie easily calculated. Furthermore, they can be built to contain all the features of the univariate dynamic linear model and promise more efficient identification of causal structures in a time series than has been possible in the past
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proposal of the vote of thanks in discussion of Cule, M., Samworth, R., and Stewart, M.: Maximum likelihood estimation of a multidimensional logconcave density On Assessing goodness of fit of generalized linear models to sparse data Bayes Linear Sufficiency and Systems of Expert Posterior Assessments On the Choice of Smoothing Parameter, Threshold and Truncation in Nonparametric Regression by Non-linear Wavelet Methods Quasi‐Likelihood and Generalizing the Em Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1