噪声对非线性递归神经网络的影响

V. Moskvitin, N. Semenova
{"title":"噪声对非线性递归神经网络的影响","authors":"V. Moskvitin, N. Semenova","doi":"10.18500/0869-6632-003052","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to establish the features of noise propagation and accumulation in a recurrent neural network using a simplified echo network as an example. In this work, we studied the influence of activation function of artificial neurons and the connection matrices between them. Methods. We have considered white Gaussian noise sources. We used additive, multiplicative and mixed noise depending on how the noise is introduced into artificial neurons. The noise impact was estimated using the dispersion (variance) of the output signal. Results. It is shown that the activation function plays a significant role in noise accumulation. Two nonlinear activation functions have been considered: the hyperbolic tangent and the sigmoid function with range form 0 to 1. It is shown that some types of noise are suppressed in the case of the second function. As a result of considering the influence of coupling matrices, it was found that diagonal coupling matrices with a large blurring coefficient lead to less noise accumulation in the echo network reservoir with an increase in the reservoir memory influence. Conclusion. It is shown that activation functions of the form of sigmoid with range from 0 to 1 are suitable for suppressing multiplicative and mixed noise. The accumulation of noise in the reservoir was considered for three types of coupling matrices inside the reservoir: a uniform matrix, a band matrix with a small blurring coefficient, and a band matrix with a large blurring coefficient. It has been found that the band matrix echo networks with a high blurring coefficient accumulates the least noise. This holds for both additive and multiplicative noise.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise influence on recurrent neural network with nonlinear neurons\",\"authors\":\"V. Moskvitin, N. Semenova\",\"doi\":\"10.18500/0869-6632-003052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study is to establish the features of noise propagation and accumulation in a recurrent neural network using a simplified echo network as an example. In this work, we studied the influence of activation function of artificial neurons and the connection matrices between them. Methods. We have considered white Gaussian noise sources. We used additive, multiplicative and mixed noise depending on how the noise is introduced into artificial neurons. The noise impact was estimated using the dispersion (variance) of the output signal. Results. It is shown that the activation function plays a significant role in noise accumulation. Two nonlinear activation functions have been considered: the hyperbolic tangent and the sigmoid function with range form 0 to 1. It is shown that some types of noise are suppressed in the case of the second function. As a result of considering the influence of coupling matrices, it was found that diagonal coupling matrices with a large blurring coefficient lead to less noise accumulation in the echo network reservoir with an increase in the reservoir memory influence. Conclusion. It is shown that activation functions of the form of sigmoid with range from 0 to 1 are suitable for suppressing multiplicative and mixed noise. The accumulation of noise in the reservoir was considered for three types of coupling matrices inside the reservoir: a uniform matrix, a band matrix with a small blurring coefficient, and a band matrix with a large blurring coefficient. It has been found that the band matrix echo networks with a high blurring coefficient accumulates the least noise. This holds for both additive and multiplicative noise.\",\"PeriodicalId\":41611,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18500/0869-6632-003052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-003052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文以一个简化的回波网络为例,探讨了噪声在递归神经网络中的传播和积累特征。在本研究中,我们研究了人工神经元激活函数的影响以及它们之间的连接矩阵。方法。我们已经考虑了高斯白噪声源。我们使用加性、乘性和混合噪声,这取决于噪声如何被引入人工神经元。利用输出信号的色散(方差)估计噪声影响。结果。结果表明,激活函数在噪声积累中起着重要的作用。研究了两种非线性激活函数:范围为0 ~ 1的双曲正切函数和s型函数。结果表明,对于第二个函数,某些类型的噪声被抑制。考虑耦合矩阵的影响,发现模糊系数较大的对角耦合矩阵对回波网络储层的噪声积累较少,对储层记忆的影响增大。结论。结果表明,在0 ~ 1范围内的s型激活函数适用于抑制乘性噪声和混合噪声。考虑了储层内三种耦合矩阵:均匀矩阵、小模糊系数的带矩阵和大模糊系数的带矩阵的噪声在储层中的积累。研究发现,高模糊系数的带矩阵回波网络积累的噪声最小。这适用于加性噪声和乘性噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Noise influence on recurrent neural network with nonlinear neurons
The purpose of this study is to establish the features of noise propagation and accumulation in a recurrent neural network using a simplified echo network as an example. In this work, we studied the influence of activation function of artificial neurons and the connection matrices between them. Methods. We have considered white Gaussian noise sources. We used additive, multiplicative and mixed noise depending on how the noise is introduced into artificial neurons. The noise impact was estimated using the dispersion (variance) of the output signal. Results. It is shown that the activation function plays a significant role in noise accumulation. Two nonlinear activation functions have been considered: the hyperbolic tangent and the sigmoid function with range form 0 to 1. It is shown that some types of noise are suppressed in the case of the second function. As a result of considering the influence of coupling matrices, it was found that diagonal coupling matrices with a large blurring coefficient lead to less noise accumulation in the echo network reservoir with an increase in the reservoir memory influence. Conclusion. It is shown that activation functions of the form of sigmoid with range from 0 to 1 are suitable for suppressing multiplicative and mixed noise. The accumulation of noise in the reservoir was considered for three types of coupling matrices inside the reservoir: a uniform matrix, a band matrix with a small blurring coefficient, and a band matrix with a large blurring coefficient. It has been found that the band matrix echo networks with a high blurring coefficient accumulates the least noise. This holds for both additive and multiplicative noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
47
期刊介绍: Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.
期刊最新文献
80 years of Vladislav A. Tsarev 70 years of Sergey V. Gonchenko 40 years of Ilya V. Sysoev To the 85th anniversary of Dmitry Ivanovich Trubetskov On the anniversary of Sergei A. Kashchenko
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1