轻型机械骡子的设计

Jian Su, Xin Zhi, Sha Lu, Qichun Zhang, Janet Dong
{"title":"轻型机械骡子的设计","authors":"Jian Su, Xin Zhi, Sha Lu, Qichun Zhang, Janet Dong","doi":"10.1115/imece2021-69715","DOIUrl":null,"url":null,"abstract":"\n Off road terrain poses a continual challenge to military movement. To meet this challenge, a robotic mule is designed to be a personal mobility device that can carry a soldier or that a soldier can carry. This paper will discuss the design process of such novel robotic mule, including overall structure, cargo/soldier platform, driving system, power system, and stress analysis and simulation. This robotic mule provides a new approach for army soldiers or soldiers’ equipment to move across field effortlessly and efficiently. The movement of the robot can be guided by GPS system or follow a soldier who carries emitter with sensor. The robot is designed to operate in nature terrain, which is standard nature trail in a boreal forest and may have a few roots and rocks but free from climbing obstacles.\n The robotic mechanism is suitable for one-man lift, with weight not to exceed 20 kg. The robot is capable of moving through a standard door width 80 cm while fully loaded. The system can support 100 kg payload. It also provides soldier following capability and be able to perform with or without the operator on board. The system controls balance of the vehicle, while avoiding obstacles, and negotiating narrow urban or off-road terrain. The speed on flat terrain is 5–7 m/s with a range of 30 km.\n The robot mule consists of a robust chassis platform, a driving system, a power system, a chair system for soldier, and GPS and vision system for autonomous control. For chassis platform, its structure is designed to be both light and sturdy. Stress analysis of the structure is applied to verify the safety of carrying objective payload. The width of the chassis platform is designed to access standard handicap door. For driving system, considering both terrain and weight limits, a four-wheel driving system is designed to overcome nature terrain which may have a few roots and rocks. Next, based on calculation of traction need and travel range, motor and lithium battery kit are selected to maintain target speed on flat terrain with target mileage. Power for extra functional features needed, such as sensors for navigation and surrounding detection etc. is also considered in calculation of battery capacity. Cargo/soldier platform is designed to provide proper space for carrying the soldier and/or equipment. Security fixtures are designed and added to the cargo/soldier platform which avoid swaying and falling of equipment. Also, ergonomics research is conducted to make a comfortable and hazards free platform for soldiers. Moreover, two handles are designed and will be mounted on each side of the robot mule, which makes the robot be lifted easily by a soldier and helps guard cargo payload in place.","PeriodicalId":23585,"journal":{"name":"Volume 7A: Dynamics, Vibration, and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Lightweight Robotic Mule\",\"authors\":\"Jian Su, Xin Zhi, Sha Lu, Qichun Zhang, Janet Dong\",\"doi\":\"10.1115/imece2021-69715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Off road terrain poses a continual challenge to military movement. To meet this challenge, a robotic mule is designed to be a personal mobility device that can carry a soldier or that a soldier can carry. This paper will discuss the design process of such novel robotic mule, including overall structure, cargo/soldier platform, driving system, power system, and stress analysis and simulation. This robotic mule provides a new approach for army soldiers or soldiers’ equipment to move across field effortlessly and efficiently. The movement of the robot can be guided by GPS system or follow a soldier who carries emitter with sensor. The robot is designed to operate in nature terrain, which is standard nature trail in a boreal forest and may have a few roots and rocks but free from climbing obstacles.\\n The robotic mechanism is suitable for one-man lift, with weight not to exceed 20 kg. The robot is capable of moving through a standard door width 80 cm while fully loaded. The system can support 100 kg payload. It also provides soldier following capability and be able to perform with or without the operator on board. The system controls balance of the vehicle, while avoiding obstacles, and negotiating narrow urban or off-road terrain. The speed on flat terrain is 5–7 m/s with a range of 30 km.\\n The robot mule consists of a robust chassis platform, a driving system, a power system, a chair system for soldier, and GPS and vision system for autonomous control. For chassis platform, its structure is designed to be both light and sturdy. Stress analysis of the structure is applied to verify the safety of carrying objective payload. The width of the chassis platform is designed to access standard handicap door. For driving system, considering both terrain and weight limits, a four-wheel driving system is designed to overcome nature terrain which may have a few roots and rocks. Next, based on calculation of traction need and travel range, motor and lithium battery kit are selected to maintain target speed on flat terrain with target mileage. Power for extra functional features needed, such as sensors for navigation and surrounding detection etc. is also considered in calculation of battery capacity. Cargo/soldier platform is designed to provide proper space for carrying the soldier and/or equipment. Security fixtures are designed and added to the cargo/soldier platform which avoid swaying and falling of equipment. Also, ergonomics research is conducted to make a comfortable and hazards free platform for soldiers. Moreover, two handles are designed and will be mounted on each side of the robot mule, which makes the robot be lifted easily by a soldier and helps guard cargo payload in place.\",\"PeriodicalId\":23585,\"journal\":{\"name\":\"Volume 7A: Dynamics, Vibration, and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7A: Dynamics, Vibration, and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2021-69715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7A: Dynamics, Vibration, and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-69715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

越野地形对军事行动构成了持续的挑战。为了应对这一挑战,机器人骡子被设计成一种个人移动设备,可以携带士兵或士兵可以携带。本文将讨论这种新型机器人骡子的设计过程,包括总体结构、货兵平台、驱动系统、动力系统以及应力分析与仿真。这种机器骡子为军队士兵或士兵装备提供了一种新的方式,使他们能够毫不费力、高效地穿越战场。机器人的运动可以由GPS系统引导,也可以跟随携带发射器和传感器的士兵。该机器人被设计为在自然地形中工作,这是北方森林中标准的自然小径,可能有一些树根和岩石,但没有攀登障碍。机器人机构适用于单人升降,重量不超过20公斤。该机器人能够在满载的情况下穿过80厘米宽的标准门。该系统能支持100公斤有效载荷。它还提供士兵跟随能力,并且能够在船上有或没有操作员的情况下执行任务。该系统控制车辆的平衡,同时避开障碍物,并通过狭窄的城市或越野地形。在平坦地形上的速度为5-7米/秒,射程为30公里。机器人骡子由坚固的底盘平台、驱动系统、动力系统、士兵座椅系统和自主控制的GPS和视觉系统组成。对于底盘平台,其结构设计既轻又坚固。对结构进行应力分析,验证其承载目标载荷的安全性。底盘平台的宽度设计用于访问标准残障门。在驱动系统方面,考虑到地形和重量的限制,四轮驱动系统的设计是为了克服可能有一些树根和岩石的自然地形。其次,根据牵引需求和行程计算,选择电机和锂电池套件,在平坦地形和目标里程上保持目标速度。在计算电池容量时,还考虑了额外功能所需的功率,例如导航和周围检测传感器等。货物/士兵平台设计为运送士兵和/或装备提供适当的空间。在货物/士兵平台上设计并增加了安全装置,以避免设备晃动和掉落。同时进行人体工程学研究,为士兵打造一个舒适、无危险的平台。此外,设计了两个手柄,将安装在机器人骡子的每一边,这使得机器人很容易被士兵举起,并帮助保护货物的有效载荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of a Lightweight Robotic Mule
Off road terrain poses a continual challenge to military movement. To meet this challenge, a robotic mule is designed to be a personal mobility device that can carry a soldier or that a soldier can carry. This paper will discuss the design process of such novel robotic mule, including overall structure, cargo/soldier platform, driving system, power system, and stress analysis and simulation. This robotic mule provides a new approach for army soldiers or soldiers’ equipment to move across field effortlessly and efficiently. The movement of the robot can be guided by GPS system or follow a soldier who carries emitter with sensor. The robot is designed to operate in nature terrain, which is standard nature trail in a boreal forest and may have a few roots and rocks but free from climbing obstacles. The robotic mechanism is suitable for one-man lift, with weight not to exceed 20 kg. The robot is capable of moving through a standard door width 80 cm while fully loaded. The system can support 100 kg payload. It also provides soldier following capability and be able to perform with or without the operator on board. The system controls balance of the vehicle, while avoiding obstacles, and negotiating narrow urban or off-road terrain. The speed on flat terrain is 5–7 m/s with a range of 30 km. The robot mule consists of a robust chassis platform, a driving system, a power system, a chair system for soldier, and GPS and vision system for autonomous control. For chassis platform, its structure is designed to be both light and sturdy. Stress analysis of the structure is applied to verify the safety of carrying objective payload. The width of the chassis platform is designed to access standard handicap door. For driving system, considering both terrain and weight limits, a four-wheel driving system is designed to overcome nature terrain which may have a few roots and rocks. Next, based on calculation of traction need and travel range, motor and lithium battery kit are selected to maintain target speed on flat terrain with target mileage. Power for extra functional features needed, such as sensors for navigation and surrounding detection etc. is also considered in calculation of battery capacity. Cargo/soldier platform is designed to provide proper space for carrying the soldier and/or equipment. Security fixtures are designed and added to the cargo/soldier platform which avoid swaying and falling of equipment. Also, ergonomics research is conducted to make a comfortable and hazards free platform for soldiers. Moreover, two handles are designed and will be mounted on each side of the robot mule, which makes the robot be lifted easily by a soldier and helps guard cargo payload in place.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-in-the-Loop Simulation for Large-Scale Applications Multi-Degree-of-Freedom Modeling for Electric Powertrains: Inertia Effect of Engine Mounting System On Structural Damping Characteristics in the Electro-Mechanical Impedance Method A Framework for Spatial 3D Collision Models: Theory and Validation Deep Neural Network Real-Time Control of a Motorized Functional Electrical Stimulation Cycle With an Uncertain Time-Varying Electromechanical Delay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1