A. J. Sáez-Castillo, A. Conde-Sánchez, Francisco Martínez
{"title":"DGLMExtPois:在双GLM框架中处理过色散和欠色散的进展","authors":"A. J. Sáez-Castillo, A. Conde-Sánchez, Francisco Martínez","doi":"10.32614/rj-2023-002","DOIUrl":null,"url":null,"abstract":"In recent years the use of regression models for under-dispersed count data, such as COM-Poisson or hyper-Poisson models, has increased. In this paper the DGLMExtPois package is presented. DGLMExtPois includes a new procedure to estimate the coefficients of a hyper-Poisson regression model within a GLM framework. The estimation process uses a gradient-based algorithm to solve a nonlinear constrained optimization problem. The package also provides an implementation of the COM-Poisson model, proposed by Huang (2017), to make it easy to compare both models. The functionality of the package is illustrated by fitting a model to a real dataset. Furthermore, an experimental comparison is made with other related packages, although none of these packages allow you to fit a hyper-Poisson model.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"85 1","pages":"121-140"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DGLMExtPois: Advances in Dealing with Over and Under-dispersion in a Double GLM Framework\",\"authors\":\"A. J. Sáez-Castillo, A. Conde-Sánchez, Francisco Martínez\",\"doi\":\"10.32614/rj-2023-002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years the use of regression models for under-dispersed count data, such as COM-Poisson or hyper-Poisson models, has increased. In this paper the DGLMExtPois package is presented. DGLMExtPois includes a new procedure to estimate the coefficients of a hyper-Poisson regression model within a GLM framework. The estimation process uses a gradient-based algorithm to solve a nonlinear constrained optimization problem. The package also provides an implementation of the COM-Poisson model, proposed by Huang (2017), to make it easy to compare both models. The functionality of the package is illustrated by fitting a model to a real dataset. Furthermore, an experimental comparison is made with other related packages, although none of these packages allow you to fit a hyper-Poisson model.\",\"PeriodicalId\":20974,\"journal\":{\"name\":\"R J.\",\"volume\":\"85 1\",\"pages\":\"121-140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2023-002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DGLMExtPois: Advances in Dealing with Over and Under-dispersion in a Double GLM Framework
In recent years the use of regression models for under-dispersed count data, such as COM-Poisson or hyper-Poisson models, has increased. In this paper the DGLMExtPois package is presented. DGLMExtPois includes a new procedure to estimate the coefficients of a hyper-Poisson regression model within a GLM framework. The estimation process uses a gradient-based algorithm to solve a nonlinear constrained optimization problem. The package also provides an implementation of the COM-Poisson model, proposed by Huang (2017), to make it easy to compare both models. The functionality of the package is illustrated by fitting a model to a real dataset. Furthermore, an experimental comparison is made with other related packages, although none of these packages allow you to fit a hyper-Poisson model.