DGLMExtPois:在双GLM框架中处理过色散和欠色散的进展

R J. Pub Date : 2023-02-10 DOI:10.32614/rj-2023-002
A. J. Sáez-Castillo, A. Conde-Sánchez, Francisco Martínez
{"title":"DGLMExtPois:在双GLM框架中处理过色散和欠色散的进展","authors":"A. J. Sáez-Castillo, A. Conde-Sánchez, Francisco Martínez","doi":"10.32614/rj-2023-002","DOIUrl":null,"url":null,"abstract":"In recent years the use of regression models for under-dispersed count data, such as COM-Poisson or hyper-Poisson models, has increased. In this paper the DGLMExtPois package is presented. DGLMExtPois includes a new procedure to estimate the coefficients of a hyper-Poisson regression model within a GLM framework. The estimation process uses a gradient-based algorithm to solve a nonlinear constrained optimization problem. The package also provides an implementation of the COM-Poisson model, proposed by Huang (2017), to make it easy to compare both models. The functionality of the package is illustrated by fitting a model to a real dataset. Furthermore, an experimental comparison is made with other related packages, although none of these packages allow you to fit a hyper-Poisson model.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"85 1","pages":"121-140"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DGLMExtPois: Advances in Dealing with Over and Under-dispersion in a Double GLM Framework\",\"authors\":\"A. J. Sáez-Castillo, A. Conde-Sánchez, Francisco Martínez\",\"doi\":\"10.32614/rj-2023-002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years the use of regression models for under-dispersed count data, such as COM-Poisson or hyper-Poisson models, has increased. In this paper the DGLMExtPois package is presented. DGLMExtPois includes a new procedure to estimate the coefficients of a hyper-Poisson regression model within a GLM framework. The estimation process uses a gradient-based algorithm to solve a nonlinear constrained optimization problem. The package also provides an implementation of the COM-Poisson model, proposed by Huang (2017), to make it easy to compare both models. The functionality of the package is illustrated by fitting a model to a real dataset. Furthermore, an experimental comparison is made with other related packages, although none of these packages allow you to fit a hyper-Poisson model.\",\"PeriodicalId\":20974,\"journal\":{\"name\":\"R J.\",\"volume\":\"85 1\",\"pages\":\"121-140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2023-002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,对欠分散计数数据的回归模型,如com -泊松模型或超泊松模型的使用有所增加。本文介绍了DGLMExtPois包。DGLMExtPois包含了一个在GLM框架内估计超泊松回归模型系数的新程序。估计过程采用基于梯度的算法来解决非线性约束优化问题。该软件包还提供了Huang(2017)提出的COM-Poisson模型的实现,以便于比较两个模型。通过将模型拟合到实际数据集来说明该包的功能。此外,与其他相关软件包进行了实验比较,尽管这些软件包都不允许您拟合超泊松模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DGLMExtPois: Advances in Dealing with Over and Under-dispersion in a Double GLM Framework
In recent years the use of regression models for under-dispersed count data, such as COM-Poisson or hyper-Poisson models, has increased. In this paper the DGLMExtPois package is presented. DGLMExtPois includes a new procedure to estimate the coefficients of a hyper-Poisson regression model within a GLM framework. The estimation process uses a gradient-based algorithm to solve a nonlinear constrained optimization problem. The package also provides an implementation of the COM-Poisson model, proposed by Huang (2017), to make it easy to compare both models. The functionality of the package is illustrated by fitting a model to a real dataset. Furthermore, an experimental comparison is made with other related packages, although none of these packages allow you to fit a hyper-Poisson model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized Mosaic Plots in the \pkg{ggplot2} Framework populR: a Package for Population Downscaling in R Making Provenance Work for You SurvMetrics: An R package for Predictive Evaluation Metrics in Survival Analysis HostSwitch: An R Package to Simulate the Extent of Host-Switching by a Consumer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1