流体力学主导的准绝热参数变化的熵产生

Philipp S. Weiss, Dennis Hardt, A. Rosch
{"title":"流体力学主导的准绝热参数变化的熵产生","authors":"Philipp S. Weiss, Dennis Hardt, A. Rosch","doi":"10.1103/PHYSREVA.103.033309","DOIUrl":null,"url":null,"abstract":"A typical strategy of realizing an adiabatic change of a many-particle system is to vary parameters very slowly on a time scale $t_\\text{r}$ much larger than intrinsic equilibration time scales. In the ideal case of adiabatic state preparation, $t_\\text{r} \\to \\infty$, the entropy production vanishes. In systems with conservation laws, the approach to the adiabatic limit is hampered by hydrodynamic long-time tails, arising from the algebraically slow relaxation of hydrodynamic fluctuations. We argue that the entropy production $\\Delta S$ of a diffusive system at finite temperature in one or two dimensions is governed by hydrodynamic modes resulting in $\\Delta S \\sim 1/\\sqrt{t_\\text{r}}$ in $d=1$ and $\\Delta S \\sim \\ln(t_\\text{r})/t_\\text{r}$ in $d=2$. In higher dimensions, entropy production is instead dominated by other high-energy modes with $\\Delta S \\sim 1/t_\\text{r}$. In order to verify the analytic prediction, we simulate the non-equilibrium dynamics of a classical two-component gas with point-like particles in one spatial dimension and examine the total entropy production as a function of $t_\\text{r}$.","PeriodicalId":8473,"journal":{"name":"arXiv: Statistical Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy production for quasiadiabatic parameter changes dominated by hydrodynamics\",\"authors\":\"Philipp S. Weiss, Dennis Hardt, A. Rosch\",\"doi\":\"10.1103/PHYSREVA.103.033309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A typical strategy of realizing an adiabatic change of a many-particle system is to vary parameters very slowly on a time scale $t_\\\\text{r}$ much larger than intrinsic equilibration time scales. In the ideal case of adiabatic state preparation, $t_\\\\text{r} \\\\to \\\\infty$, the entropy production vanishes. In systems with conservation laws, the approach to the adiabatic limit is hampered by hydrodynamic long-time tails, arising from the algebraically slow relaxation of hydrodynamic fluctuations. We argue that the entropy production $\\\\Delta S$ of a diffusive system at finite temperature in one or two dimensions is governed by hydrodynamic modes resulting in $\\\\Delta S \\\\sim 1/\\\\sqrt{t_\\\\text{r}}$ in $d=1$ and $\\\\Delta S \\\\sim \\\\ln(t_\\\\text{r})/t_\\\\text{r}$ in $d=2$. In higher dimensions, entropy production is instead dominated by other high-energy modes with $\\\\Delta S \\\\sim 1/t_\\\\text{r}$. In order to verify the analytic prediction, we simulate the non-equilibrium dynamics of a classical two-component gas with point-like particles in one spatial dimension and examine the total entropy production as a function of $t_\\\\text{r}$.\",\"PeriodicalId\":8473,\"journal\":{\"name\":\"arXiv: Statistical Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVA.103.033309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVA.103.033309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实现多粒子系统绝热变化的一个典型策略是在一个比内在平衡时间尺度大得多的时间尺度$t_\text{r}$上非常缓慢地改变参数。在绝热状态制备的理想情况下,$t_\text{r} \to \infty$,熵产消失。在具有守恒定律的系统中,接近绝热极限受到水动力长尾的阻碍,这是由水动力波动在代数上的缓慢松弛引起的。我们认为,在一维或二维有限温度下,扩散系统的熵产$\Delta S$受水动力模式的支配,从而导致$d=1$中的$\Delta S \sim 1/\sqrt{t_\text{r}}$和$d=2$中的$\Delta S \sim \ln(t_\text{r})/t_\text{r}$。在更高的维度中,熵的产生由其他具有$\Delta S \sim 1/t_\text{r}$的高能模式主导。为了验证分析预测,我们在一个空间维度上模拟了具有点状粒子的经典双组分气体的非平衡动力学,并考察了总熵产作为$t_\text{r}$的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Entropy production for quasiadiabatic parameter changes dominated by hydrodynamics
A typical strategy of realizing an adiabatic change of a many-particle system is to vary parameters very slowly on a time scale $t_\text{r}$ much larger than intrinsic equilibration time scales. In the ideal case of adiabatic state preparation, $t_\text{r} \to \infty$, the entropy production vanishes. In systems with conservation laws, the approach to the adiabatic limit is hampered by hydrodynamic long-time tails, arising from the algebraically slow relaxation of hydrodynamic fluctuations. We argue that the entropy production $\Delta S$ of a diffusive system at finite temperature in one or two dimensions is governed by hydrodynamic modes resulting in $\Delta S \sim 1/\sqrt{t_\text{r}}$ in $d=1$ and $\Delta S \sim \ln(t_\text{r})/t_\text{r}$ in $d=2$. In higher dimensions, entropy production is instead dominated by other high-energy modes with $\Delta S \sim 1/t_\text{r}$. In order to verify the analytic prediction, we simulate the non-equilibrium dynamics of a classical two-component gas with point-like particles in one spatial dimension and examine the total entropy production as a function of $t_\text{r}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Black-Body Radiation The Ising Model Large Deviation Theory The First Law The Constitution of Stars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1