基于弹性钢丝绳模型的抓斗卸船机改进负零振动防摆控制策略

IF 1.2 4区 工程技术 Q3 ENGINEERING, MECHANICAL Mechanics & Industry Pub Date : 2021-01-01 DOI:10.1051/meca/2021045
Xiaohua Cao, Chao Meng, Yong Zhou, Meng Zhu
{"title":"基于弹性钢丝绳模型的抓斗卸船机改进负零振动防摆控制策略","authors":"Xiaohua Cao, Chao Meng, Yong Zhou, Meng Zhu","doi":"10.1051/meca/2021045","DOIUrl":null,"url":null,"abstract":"A dynamic model of swing system of bridge-type ship unloader is established by considering the elastic factor of wire rope in this paper. Based on this model, an improved Negative Zero Vibration (NZV) shaper with optimal control parameters of variable rope length system is proposed to restrain the swing of grab. Then the control effects, influence of elasticity factor and parameter sensitivities are analyzed based on numerical simulation. The results show that the proposed control strategy can reduce the working cycle time of the grab ship unloader about 11% when considering the elastic factor of the wire rope, and the grab's maximum residual swing angle decreases by 67% when discharging at full load, and decreases by 79% when taking the cargos at empty load. This implies that the improved NZV control method provides better swing angle control performance and shorter operation time compared with the Zero Vibration (ZV) and Zero Vibration and Derivative (ZVD) methods. Moreover, elastic rope model can improve the swing angle control effect of grab based on the proposed control strategy compared with rigid rope model. The parameter sensitivity analysis displays that the grab's maximum residual swing angle by using the improved NZV method is sensitive to the change of the grab's center of gravity, and this angle is more sensitive to the wire rope diameter deviation compared with the elastic modulus deviation.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An improved negative zero vibration anti-swing control strategy for grab ship unloader based on elastic wire rope model\",\"authors\":\"Xiaohua Cao, Chao Meng, Yong Zhou, Meng Zhu\",\"doi\":\"10.1051/meca/2021045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dynamic model of swing system of bridge-type ship unloader is established by considering the elastic factor of wire rope in this paper. Based on this model, an improved Negative Zero Vibration (NZV) shaper with optimal control parameters of variable rope length system is proposed to restrain the swing of grab. Then the control effects, influence of elasticity factor and parameter sensitivities are analyzed based on numerical simulation. The results show that the proposed control strategy can reduce the working cycle time of the grab ship unloader about 11% when considering the elastic factor of the wire rope, and the grab's maximum residual swing angle decreases by 67% when discharging at full load, and decreases by 79% when taking the cargos at empty load. This implies that the improved NZV control method provides better swing angle control performance and shorter operation time compared with the Zero Vibration (ZV) and Zero Vibration and Derivative (ZVD) methods. Moreover, elastic rope model can improve the swing angle control effect of grab based on the proposed control strategy compared with rigid rope model. The parameter sensitivity analysis displays that the grab's maximum residual swing angle by using the improved NZV method is sensitive to the change of the grab's center of gravity, and this angle is more sensitive to the wire rope diameter deviation compared with the elastic modulus deviation.\",\"PeriodicalId\":49018,\"journal\":{\"name\":\"Mechanics & Industry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics & Industry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1051/meca/2021045\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics & Industry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1051/meca/2021045","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 4

摘要

考虑钢丝绳的弹性因素,建立了桥式卸船机摆动系统的动力学模型。在此模型的基础上,提出了一种改进的负零振动成形器,并采用变绳长系统的最优控制参数来抑制抓斗的摆动。然后在数值模拟的基础上分析了控制效果、弹性系数和参数灵敏度的影响。结果表明:在考虑钢丝绳弹性因素的情况下,该控制策略可使抓斗卸船机的工作周期缩短约11%;在满载卸船时,抓斗的最大剩余摆角减小67%;在空载卸船时,抓斗的最大剩余摆角减小79%。这表明,与零振动(ZV)和零振动与导数(ZVD)方法相比,改进的NZV控制方法具有更好的摆角控制性能和更短的操作时间。此外,与刚性绳模型相比,弹性绳模型可以提高基于所提控制策略的抓斗摆动角控制效果。参数灵敏度分析表明,改进的NZV方法所得到的抓斗最大剩余摆角对抓斗重心的变化较为敏感,且该角对钢丝绳直径偏差的敏感性高于弹性模量偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved negative zero vibration anti-swing control strategy for grab ship unloader based on elastic wire rope model
A dynamic model of swing system of bridge-type ship unloader is established by considering the elastic factor of wire rope in this paper. Based on this model, an improved Negative Zero Vibration (NZV) shaper with optimal control parameters of variable rope length system is proposed to restrain the swing of grab. Then the control effects, influence of elasticity factor and parameter sensitivities are analyzed based on numerical simulation. The results show that the proposed control strategy can reduce the working cycle time of the grab ship unloader about 11% when considering the elastic factor of the wire rope, and the grab's maximum residual swing angle decreases by 67% when discharging at full load, and decreases by 79% when taking the cargos at empty load. This implies that the improved NZV control method provides better swing angle control performance and shorter operation time compared with the Zero Vibration (ZV) and Zero Vibration and Derivative (ZVD) methods. Moreover, elastic rope model can improve the swing angle control effect of grab based on the proposed control strategy compared with rigid rope model. The parameter sensitivity analysis displays that the grab's maximum residual swing angle by using the improved NZV method is sensitive to the change of the grab's center of gravity, and this angle is more sensitive to the wire rope diameter deviation compared with the elastic modulus deviation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics & Industry
Mechanics & Industry ENGINEERING, MECHANICAL-MECHANICS
CiteScore
2.80
自引率
0.00%
发文量
25
审稿时长
>12 weeks
期刊介绍: An International Journal on Mechanical Sciences and Engineering Applications With papers from industry, Research and Development departments and academic institutions, this journal acts as an interface between research and industry, coordinating and disseminating scientific and technical mechanical research in relation to industrial activities. Targeted readers are technicians, engineers, executives, researchers, and teachers who are working in industrial companies as managers or in Research and Development departments, technical centres, laboratories, universities, technical and engineering schools. The journal is an AFM (Association Française de Mécanique) publication.
期刊最新文献
Numerical investigation of thermal buckling and post-buckling behavior of an EN AW 6016-T4 car roof assembled in a steel body-in-white Analyzing the influence of lifter design and ball mill speed on grinding performance, particle behavior and contact forces A neural network-based data-driven local modeling of spotwelded plates under impact Multi-objective shape optimization of developable Bézier-like surfaces using non-dominated sorting genetic algorithm Experimental quantification of heat haze errors in stereo-DIC displacements: Application to thermoplastics thermoforming temperature range
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1