{"title":"约束下的液滴:与孤子束缚态的竞争与共存","authors":"Xiaoling Cui, Yin-feng Ma","doi":"10.1103/PHYSREVRESEARCH.3.L012027","DOIUrl":null,"url":null,"abstract":"We study the stability of quantum droplet and its associated phase transitions in ultracold Bose-Bose mixtures uniformly confined in quasi-two-dimension. We show that the confinement-induced boundary effect can be significant when increasing the atom number or reducing the confinement length, which destabilizes the quantum droplet towards the formation of a soliton bound state. In particular, as increasing the atom number we find the reentrance of soliton ground state, while the droplet is stabilized only within a finite number window that sensitively depends on the confinement length. Near the droplet-soliton transitions, they can coexist with each other as two local minima in the energy landscape. Take the two-species $^{39}$K bosons for instance, we have mapped out the phase diagram for droplet-soliton transition and coexistence in terms of atom number and confinement length. The revealed intriguing competition between quantum droplet and soliton under confinement can be readily probed in current cold atoms experiments.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"84 3 Suppl 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Droplet under confinement: Competition and coexistence with a soliton bound state\",\"authors\":\"Xiaoling Cui, Yin-feng Ma\",\"doi\":\"10.1103/PHYSREVRESEARCH.3.L012027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the stability of quantum droplet and its associated phase transitions in ultracold Bose-Bose mixtures uniformly confined in quasi-two-dimension. We show that the confinement-induced boundary effect can be significant when increasing the atom number or reducing the confinement length, which destabilizes the quantum droplet towards the formation of a soliton bound state. In particular, as increasing the atom number we find the reentrance of soliton ground state, while the droplet is stabilized only within a finite number window that sensitively depends on the confinement length. Near the droplet-soliton transitions, they can coexist with each other as two local minima in the energy landscape. Take the two-species $^{39}$K bosons for instance, we have mapped out the phase diagram for droplet-soliton transition and coexistence in terms of atom number and confinement length. The revealed intriguing competition between quantum droplet and soliton under confinement can be readily probed in current cold atoms experiments.\",\"PeriodicalId\":8838,\"journal\":{\"name\":\"arXiv: Quantum Gases\",\"volume\":\"84 3 Suppl 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVRESEARCH.3.L012027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.L012027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Droplet under confinement: Competition and coexistence with a soliton bound state
We study the stability of quantum droplet and its associated phase transitions in ultracold Bose-Bose mixtures uniformly confined in quasi-two-dimension. We show that the confinement-induced boundary effect can be significant when increasing the atom number or reducing the confinement length, which destabilizes the quantum droplet towards the formation of a soliton bound state. In particular, as increasing the atom number we find the reentrance of soliton ground state, while the droplet is stabilized only within a finite number window that sensitively depends on the confinement length. Near the droplet-soliton transitions, they can coexist with each other as two local minima in the energy landscape. Take the two-species $^{39}$K bosons for instance, we have mapped out the phase diagram for droplet-soliton transition and coexistence in terms of atom number and confinement length. The revealed intriguing competition between quantum droplet and soliton under confinement can be readily probed in current cold atoms experiments.