应用聚类分析方法优化护理床上人体生物力学运动模型

J. Demmer, A. Kitzig, G. Stockmanns, E. Naroska, R. Viga, A. Grabmaier
{"title":"应用聚类分析方法优化护理床上人体生物力学运动模型","authors":"J. Demmer, A. Kitzig, G. Stockmanns, E. Naroska, R. Viga, A. Grabmaier","doi":"10.23919/Eusipco47968.2020.9287503","DOIUrl":null,"url":null,"abstract":"The paper considers the optimization of a Hidden-Markov Model (HMM) based method for the generation of averaged motion sequences. To create averaged motion sequences, motion sequences of different test persons were originally recorded with a motion capture system (MoCap system) and then averaged using an HMM approach. The resulting averaged data sets, however, partly showed serious motion artifacts and uncoordinated intermediate movements, especially in the extremities. The aim of this work was to combine only movements with similar courses in the extremities by a suitable cluster analysis. For each test person, model body descriptions of 21 body elements are available, each of which is represented in three-dimensional time series. For optimization, the MoCap data are first compared using time warp edit distance (TWED) and clustered using an agglomerative hierarchical procedure. Finally, the data of the resulting clusters are used to generate new averaged motion sequences using the HMM approach. The resulting averaged data can be used, for example, in a simulation in a multilevel biomechanical model.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"24 1","pages":"1323-1327"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptation of cluster analysis methods to optimize a biomechanical motion model of humans in a nursing bed\",\"authors\":\"J. Demmer, A. Kitzig, G. Stockmanns, E. Naroska, R. Viga, A. Grabmaier\",\"doi\":\"10.23919/Eusipco47968.2020.9287503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper considers the optimization of a Hidden-Markov Model (HMM) based method for the generation of averaged motion sequences. To create averaged motion sequences, motion sequences of different test persons were originally recorded with a motion capture system (MoCap system) and then averaged using an HMM approach. The resulting averaged data sets, however, partly showed serious motion artifacts and uncoordinated intermediate movements, especially in the extremities. The aim of this work was to combine only movements with similar courses in the extremities by a suitable cluster analysis. For each test person, model body descriptions of 21 body elements are available, each of which is represented in three-dimensional time series. For optimization, the MoCap data are first compared using time warp edit distance (TWED) and clustered using an agglomerative hierarchical procedure. Finally, the data of the resulting clusters are used to generate new averaged motion sequences using the HMM approach. The resulting averaged data can be used, for example, in a simulation in a multilevel biomechanical model.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"24 1\",\"pages\":\"1323-1327\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了基于隐马尔可夫模型(HMM)的平均运动序列生成方法的优化问题。为了创建平均运动序列,首先使用动作捕捉系统(MoCap系统)记录不同测试人员的运动序列,然后使用HMM方法进行平均。然而,结果的平均数据集部分显示严重的运动伪影和不协调的中间运动,特别是在四肢。这项工作的目的是通过适当的聚类分析,仅将运动与四肢的相似课程结合起来。对于每个测试人,可以获得21个身体元素的模型身体描述,每个身体元素都以三维时间序列的形式表示。为了优化,首先使用时间扭曲编辑距离(TWED)比较动作捕捉数据,并使用聚集分层过程进行聚类。最后,使用隐马尔可夫方法将得到的聚类数据用于生成新的平均运动序列。所得到的平均数据可用于,例如,在多层生物力学模型的模拟中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptation of cluster analysis methods to optimize a biomechanical motion model of humans in a nursing bed
The paper considers the optimization of a Hidden-Markov Model (HMM) based method for the generation of averaged motion sequences. To create averaged motion sequences, motion sequences of different test persons were originally recorded with a motion capture system (MoCap system) and then averaged using an HMM approach. The resulting averaged data sets, however, partly showed serious motion artifacts and uncoordinated intermediate movements, especially in the extremities. The aim of this work was to combine only movements with similar courses in the extremities by a suitable cluster analysis. For each test person, model body descriptions of 21 body elements are available, each of which is represented in three-dimensional time series. For optimization, the MoCap data are first compared using time warp edit distance (TWED) and clustered using an agglomerative hierarchical procedure. Finally, the data of the resulting clusters are used to generate new averaged motion sequences using the HMM approach. The resulting averaged data can be used, for example, in a simulation in a multilevel biomechanical model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eusipco 2021 Cover Page A graph-theoretic sensor-selection scheme for covariance-based Motor Imagery (MI) decoding Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor Deep Transform Learning for Multi-Sensor Fusion Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1