基于抗体链的一维混沌动力系统联想记忆模型

C. Ou
{"title":"基于抗体链的一维混沌动力系统联想记忆模型","authors":"C. Ou","doi":"10.1109/IJCNN.2015.7280647","DOIUrl":null,"url":null,"abstract":"Immune memory of antigens are formed as limit behavior of cyclic idiotypic immune networks equipped with antibody dynamics. Immune memory mechanism is studied by combining network structure and dynamical systems. Moreover, associative memory can be explored by network dynamics determined by affinity index of antibody chain. Antibody chains with larger affinity indexes generate associative immune memory.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"1 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model of associative memory based on antibody chain with one-dimensional chaotic dynamical system\",\"authors\":\"C. Ou\",\"doi\":\"10.1109/IJCNN.2015.7280647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Immune memory of antigens are formed as limit behavior of cyclic idiotypic immune networks equipped with antibody dynamics. Immune memory mechanism is studied by combining network structure and dynamical systems. Moreover, associative memory can be explored by network dynamics determined by affinity index of antibody chain. Antibody chains with larger affinity indexes generate associative immune memory.\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"1 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

抗原的免疫记忆是具有抗体动力学的循环独特型免疫网络的极限行为。将网络结构与动力系统相结合,研究免疫记忆机制。此外,可以通过抗体链亲和指数确定的网络动力学来探索联想记忆。亲和指数较大的抗体链产生联想免疫记忆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model of associative memory based on antibody chain with one-dimensional chaotic dynamical system
Immune memory of antigens are formed as limit behavior of cyclic idiotypic immune networks equipped with antibody dynamics. Immune memory mechanism is studied by combining network structure and dynamical systems. Moreover, associative memory can be explored by network dynamics determined by affinity index of antibody chain. Antibody chains with larger affinity indexes generate associative immune memory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient conformal regressors using bagged neural nets Repeated play of the SVM game as a means of adaptive classification Unit commitment considering multiple charging and discharging scenarios of plug-in electric vehicles High-dimensional function approximation using local linear embedding A label compression coding approach through maximizing dependence between features and labels for multi-label classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1