A. Paolacci, R. D'Ovidio, R. Marabottini, C. Nali, G. Lorenzini, M. Abenavoli, M. Badiani
{"title":"臭氧诱导敏感和抗性大豆品种苯丙氨酸解氨酶、查尔酮合成酶和查尔酮异构酶RNA转录物的差异积累","authors":"A. Paolacci, R. D'Ovidio, R. Marabottini, C. Nali, G. Lorenzini, M. Abenavoli, M. Badiani","doi":"10.1071/PP00095","DOIUrl":null,"url":null,"abstract":"On exposure to a realistic ozone dose, an enhanced mRNA accumulation for phenyalanine ammonia-lyase (EC 4.3.1.5), naringenin–chalcone synthase [malonyl–CoA:4-coumaroyl–CoA malonyltransferase (cyclising); EC 2.3.1.74] and chalcone isomerase [flavanone lyase (decyclising); EC 5.5.1.6] genes, whose products are involved in the biosynthesis of phenylpropanoid molecules, flavonoid pigments and isoflavonoid phytoalexins, was observed in primary leaves of the bean (Phaseolus vulgaris L.) cv. Pinto. This cultivar was previously known to be ozone-sensitive on the basis of the appearance of macroscopic foliar injury, but not in coeval leaves of the bean cv. Groffy, known to be ozone-resistant on the basis of the aforementioned criterion. Distinct time patterns were observed in Pinto leaves for the ozone-dependent enhanced mRNA accumulation for the aforementioned genes, which in all cases largely preceded the appearance of visible injury symptoms. These results lend support to the view of ozone as an abiotic elicitor of plant defence responses. By analogy with other case studies, it is also suggested that proneness to develop visible ozone symptoms might rest on a sequence of molecular events similar to that leading to the hypersensitive response during plant–pathogen incompatible interactions.","PeriodicalId":8650,"journal":{"name":"Australian Journal of Plant Physiology","volume":"1 1","pages":"425-428"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Ozone induces a differential accumulation of phenyalanine ammonia-lyase, chalcone synthase and chalcone isomerase RNA transcripts in sensitive and resistant bean cultivars\",\"authors\":\"A. Paolacci, R. D'Ovidio, R. Marabottini, C. Nali, G. Lorenzini, M. Abenavoli, M. Badiani\",\"doi\":\"10.1071/PP00095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On exposure to a realistic ozone dose, an enhanced mRNA accumulation for phenyalanine ammonia-lyase (EC 4.3.1.5), naringenin–chalcone synthase [malonyl–CoA:4-coumaroyl–CoA malonyltransferase (cyclising); EC 2.3.1.74] and chalcone isomerase [flavanone lyase (decyclising); EC 5.5.1.6] genes, whose products are involved in the biosynthesis of phenylpropanoid molecules, flavonoid pigments and isoflavonoid phytoalexins, was observed in primary leaves of the bean (Phaseolus vulgaris L.) cv. Pinto. This cultivar was previously known to be ozone-sensitive on the basis of the appearance of macroscopic foliar injury, but not in coeval leaves of the bean cv. Groffy, known to be ozone-resistant on the basis of the aforementioned criterion. Distinct time patterns were observed in Pinto leaves for the ozone-dependent enhanced mRNA accumulation for the aforementioned genes, which in all cases largely preceded the appearance of visible injury symptoms. These results lend support to the view of ozone as an abiotic elicitor of plant defence responses. By analogy with other case studies, it is also suggested that proneness to develop visible ozone symptoms might rest on a sequence of molecular events similar to that leading to the hypersensitive response during plant–pathogen incompatible interactions.\",\"PeriodicalId\":8650,\"journal\":{\"name\":\"Australian Journal of Plant Physiology\",\"volume\":\"1 1\",\"pages\":\"425-428\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Plant Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1071/PP00095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Plant Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/PP00095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ozone induces a differential accumulation of phenyalanine ammonia-lyase, chalcone synthase and chalcone isomerase RNA transcripts in sensitive and resistant bean cultivars
On exposure to a realistic ozone dose, an enhanced mRNA accumulation for phenyalanine ammonia-lyase (EC 4.3.1.5), naringenin–chalcone synthase [malonyl–CoA:4-coumaroyl–CoA malonyltransferase (cyclising); EC 2.3.1.74] and chalcone isomerase [flavanone lyase (decyclising); EC 5.5.1.6] genes, whose products are involved in the biosynthesis of phenylpropanoid molecules, flavonoid pigments and isoflavonoid phytoalexins, was observed in primary leaves of the bean (Phaseolus vulgaris L.) cv. Pinto. This cultivar was previously known to be ozone-sensitive on the basis of the appearance of macroscopic foliar injury, but not in coeval leaves of the bean cv. Groffy, known to be ozone-resistant on the basis of the aforementioned criterion. Distinct time patterns were observed in Pinto leaves for the ozone-dependent enhanced mRNA accumulation for the aforementioned genes, which in all cases largely preceded the appearance of visible injury symptoms. These results lend support to the view of ozone as an abiotic elicitor of plant defence responses. By analogy with other case studies, it is also suggested that proneness to develop visible ozone symptoms might rest on a sequence of molecular events similar to that leading to the hypersensitive response during plant–pathogen incompatible interactions.