利用深度学习技术自动评估人类胚胎的胚胎发育和着床潜能

Y. Kan‐Tor, Nir Zabari, Ity Erlich, Adi Szeskin, Tamar Amitai, D. Richter, Y. Or, Z. Shoham, A. Hurwitz, I. Har-Vardi, M. Gavish, A. Ben-Meir, A. Buxboim
{"title":"利用深度学习技术自动评估人类胚胎的胚胎发育和着床潜能","authors":"Y. Kan‐Tor, Nir Zabari, Ity Erlich, Adi Szeskin, Tamar Amitai, D. Richter, Y. Or, Z. Shoham, A. Hurwitz, I. Har-Vardi, M. Gavish, A. Ben-Meir, A. Buxboim","doi":"10.1002/aisy.202000080","DOIUrl":null,"url":null,"abstract":"In in vitro fertilization (IVF) treatments, early identification of embryos with high implantation potential is required for shortening time to pregnancy while avoiding clinical complications to the newborn and the mother caused by multiple pregnancies. Current classification tools are based on morphological and morphokinetic parameters that are manually annotated using time‐lapse video files. However, manual annotation introduces interobserver and intraobserver variability and provides a discrete representation of preimplantation development while ignoring dynamic features that are associated with embryo quality. A fully automated and standardized classifiers are developed by training deep neural networks directly on the raw video files of >6200 blastulation‐labeled and >5500 implantation‐labeled embryos. Prediction of embryo implantation is more accurate than the current state‐of‐the‐art morphokientic classifier. Embryo classification improves with video length where the most predictive images show only partial association with morphological features. Deep learning substitute to human evaluation of embryo developmental competence thus contributes to implementing single embryo transfer methodology.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Automated Evaluation of Human Embryo Blastulation and Implantation Potential using Deep‐Learning\",\"authors\":\"Y. Kan‐Tor, Nir Zabari, Ity Erlich, Adi Szeskin, Tamar Amitai, D. Richter, Y. Or, Z. Shoham, A. Hurwitz, I. Har-Vardi, M. Gavish, A. Ben-Meir, A. Buxboim\",\"doi\":\"10.1002/aisy.202000080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In in vitro fertilization (IVF) treatments, early identification of embryos with high implantation potential is required for shortening time to pregnancy while avoiding clinical complications to the newborn and the mother caused by multiple pregnancies. Current classification tools are based on morphological and morphokinetic parameters that are manually annotated using time‐lapse video files. However, manual annotation introduces interobserver and intraobserver variability and provides a discrete representation of preimplantation development while ignoring dynamic features that are associated with embryo quality. A fully automated and standardized classifiers are developed by training deep neural networks directly on the raw video files of >6200 blastulation‐labeled and >5500 implantation‐labeled embryos. Prediction of embryo implantation is more accurate than the current state‐of‐the‐art morphokientic classifier. Embryo classification improves with video length where the most predictive images show only partial association with morphological features. Deep learning substitute to human evaluation of embryo developmental competence thus contributes to implementing single embryo transfer methodology.\",\"PeriodicalId\":7187,\"journal\":{\"name\":\"Advanced Intelligent Systems\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.202000080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202000080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在体外受精(IVF)治疗中,需要尽早发现具有高着床潜力的胚胎,以缩短妊娠时间,同时避免多胎妊娠对新生儿和母亲造成的临床并发症。目前的分类工具是基于形态学和形态动力学参数,这些参数是使用延时视频文件手动注释的。然而,手工注释引入了观察者之间和观察者内部的可变性,并提供了植入前发育的离散表示,而忽略了与胚胎质量相关的动态特征。通过直接训练深度神经网络,开发了一个完全自动化和标准化的分类器,该分类器的原始视频文件为>6200个囊胚标记和>5500个着床标记的胚胎。胚胎着床的预测比目前最先进的形态分类器更准确。胚胎分类随着视频长度的增加而提高,其中最具预测性的图像只显示与形态特征的部分关联。深度学习代替人类对胚胎发育能力的评估,从而有助于实现单胚胎移植方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Evaluation of Human Embryo Blastulation and Implantation Potential using Deep‐Learning
In in vitro fertilization (IVF) treatments, early identification of embryos with high implantation potential is required for shortening time to pregnancy while avoiding clinical complications to the newborn and the mother caused by multiple pregnancies. Current classification tools are based on morphological and morphokinetic parameters that are manually annotated using time‐lapse video files. However, manual annotation introduces interobserver and intraobserver variability and provides a discrete representation of preimplantation development while ignoring dynamic features that are associated with embryo quality. A fully automated and standardized classifiers are developed by training deep neural networks directly on the raw video files of >6200 blastulation‐labeled and >5500 implantation‐labeled embryos. Prediction of embryo implantation is more accurate than the current state‐of‐the‐art morphokientic classifier. Embryo classification improves with video length where the most predictive images show only partial association with morphological features. Deep learning substitute to human evaluation of embryo developmental competence thus contributes to implementing single embryo transfer methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Tactile Synthetic Tissue: from Soft Robotics to Hybrid Surgical Simulators Maximizing the Synaptic Efficiency of Ferroelectric Tunnel Junction Devices Using a Switching Mechanism Hidden in an Identical Pulse Programming Learning Scheme Enhancing Sensitivity across Scales with Highly Sensitive Hall Effect‐Based Auxetic Tactile Sensors 3D Printed Swordfish‐Like Wireless Millirobot Widened Attention‐Enhanced Atrous Convolutional Network for Efficient Embedded Vision Applications under Resource Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1