多层推理模糊冢本法确定可可植物的土地适宜性等级

Iin Intan Uljanah, Shofwatul Uyun
{"title":"多层推理模糊冢本法确定可可植物的土地适宜性等级","authors":"Iin Intan Uljanah, Shofwatul Uyun","doi":"10.15408/jti.v14i1.13616","DOIUrl":null,"url":null,"abstract":"Determining the land suitability class of plants specifically cocoa (Theobroma cacao) is significant to do because each plant has a different characteristic of growth. This research aims at implementing the algorithm to determine the land suitability class of cocoa plants using the Multi-Layer Inference Fuzzy Tsukamoto (MLIFT). This research uses 18 input variables including 15 non-linguistic variables or crisp and the rest are linguistic ones or fuzzy as the data of growth requirements of cocoa plants. Generally, the algorithm used consists of three main steps those are fuzzification, Tsukamoto inference machine, and defuzzification consisting of three layers. The first layer covers seven inference engines, while each of the second and the third ones only consists of one inference engine. The concept of inference process in Fuzzy Tsukamoto is calculating the weighted average of each result of the  nference process. Based on the testing result, it can be concluded that the multi-layer inference Fuzzy Tsukamoto for determining the land suitability class of cocoa plants has an accuracy level amounted 97%.","PeriodicalId":52586,"journal":{"name":"Jurnal Sarjana Teknik Informatika","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MULTI-LAYER INFERENCE FUZZY TSUKAMOTO DETERMINING LAND SUITABILITY CLASS OF COCOA PLANTS\",\"authors\":\"Iin Intan Uljanah, Shofwatul Uyun\",\"doi\":\"10.15408/jti.v14i1.13616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining the land suitability class of plants specifically cocoa (Theobroma cacao) is significant to do because each plant has a different characteristic of growth. This research aims at implementing the algorithm to determine the land suitability class of cocoa plants using the Multi-Layer Inference Fuzzy Tsukamoto (MLIFT). This research uses 18 input variables including 15 non-linguistic variables or crisp and the rest are linguistic ones or fuzzy as the data of growth requirements of cocoa plants. Generally, the algorithm used consists of three main steps those are fuzzification, Tsukamoto inference machine, and defuzzification consisting of three layers. The first layer covers seven inference engines, while each of the second and the third ones only consists of one inference engine. The concept of inference process in Fuzzy Tsukamoto is calculating the weighted average of each result of the  nference process. Based on the testing result, it can be concluded that the multi-layer inference Fuzzy Tsukamoto for determining the land suitability class of cocoa plants has an accuracy level amounted 97%.\",\"PeriodicalId\":52586,\"journal\":{\"name\":\"Jurnal Sarjana Teknik Informatika\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Sarjana Teknik Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15408/jti.v14i1.13616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sarjana Teknik Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15408/jti.v14i1.13616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确定植物的土地适宜性等级,特别是可可(Theobroma cacao)是很重要的,因为每种植物都有不同的生长特征。本研究旨在利用多层推理模糊冢本(Multi-Layer Inference Fuzzy Tsukamoto, MLIFT)算法来确定可可植物的土地适宜性类别。本研究使用18个输入变量,其中15个为非语言变量或crisp,其余为语言变量或fuzzy作为可可植株生长需求的数据。通常使用的算法包括三个主要步骤,即模糊化,冢本推理机和三层的去模糊化。第一层包含7个推理引擎,第二层和第三层各包含一个推理引擎。在模糊冢本理论中,推理过程的概念是计算每个推理过程结果的加权平均值。根据测试结果,可以得出多层推理模糊冢本法确定可可植物土地适宜性等级的准确率达到97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MULTI-LAYER INFERENCE FUZZY TSUKAMOTO DETERMINING LAND SUITABILITY CLASS OF COCOA PLANTS
Determining the land suitability class of plants specifically cocoa (Theobroma cacao) is significant to do because each plant has a different characteristic of growth. This research aims at implementing the algorithm to determine the land suitability class of cocoa plants using the Multi-Layer Inference Fuzzy Tsukamoto (MLIFT). This research uses 18 input variables including 15 non-linguistic variables or crisp and the rest are linguistic ones or fuzzy as the data of growth requirements of cocoa plants. Generally, the algorithm used consists of three main steps those are fuzzification, Tsukamoto inference machine, and defuzzification consisting of three layers. The first layer covers seven inference engines, while each of the second and the third ones only consists of one inference engine. The concept of inference process in Fuzzy Tsukamoto is calculating the weighted average of each result of the  nference process. Based on the testing result, it can be concluded that the multi-layer inference Fuzzy Tsukamoto for determining the land suitability class of cocoa plants has an accuracy level amounted 97%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
15
审稿时长
8 weeks
期刊最新文献
Development of Intelligent Door Lock System for Room Management Using Multi Factor Authentication Development of Web-Based Rtikabdimas Application With a Rapid Unified Process Approach Real-Time Monitoring of Gas Fields: Prototype at Pt Gamma Energi Pratama Bogor Scrum Framework Implementation for Building an Application of Monitoring and Booking E-Bus Based on QRCode Iterative Dichotomiser Three (Id3) Algorithm For Classification Community of Productive and Non-Productive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1