C. Baer, C. Saraceno, O. Heckl, M. Golling, T. Sudmeyer, K. Beil, C. Krãnkel, K. Petermann, G. Huber, U. Keller
{"title":"Yb:(Sc,Y,Lu)2O3薄板激光器的连续波和锁模工作","authors":"C. Baer, C. Saraceno, O. Heckl, M. Golling, T. Sudmeyer, K. Beil, C. Krãnkel, K. Petermann, G. Huber, U. Keller","doi":"10.1109/CLEOE.2011.5942502","DOIUrl":null,"url":null,"abstract":"Recent SESAM modelocked thin disk lasers have achieved average powers > 140 W [1] and pulse energies > 25 µJ [2], which is higher than for any other ultrafast oscillator technology. Many experiments in areas such as high field laser science require pulse durations in the sub-100-fs regime, which has not been demonstrated with thin disk lasers so far. The standard thin-disk material Yb:YAG is limited to pulse durations above 700 fs in efficient high power operation. Using Yb:KYW, 22 W of average power were demonstrated in 240-fs pulses [3]. Recently, sesquioxide materials have attracted great attention as a promising candidate for high-power short pulse generation in the thin-disk geometry [4]. For example with Yb:Lu2O3 pulses as short as 329 fs at 40 W [5] and with Yb:LuScO3 pulse durations of 227 fs at 7.2 W [6] have been achieved from a SESAM modelocked thin-disk laser oscillator.","PeriodicalId":6331,"journal":{"name":"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)","volume":"25 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"CW and modelocked operation of an Yb:(Sc,Y,Lu)2O3 thin-disk laser\",\"authors\":\"C. Baer, C. Saraceno, O. Heckl, M. Golling, T. Sudmeyer, K. Beil, C. Krãnkel, K. Petermann, G. Huber, U. Keller\",\"doi\":\"10.1109/CLEOE.2011.5942502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent SESAM modelocked thin disk lasers have achieved average powers > 140 W [1] and pulse energies > 25 µJ [2], which is higher than for any other ultrafast oscillator technology. Many experiments in areas such as high field laser science require pulse durations in the sub-100-fs regime, which has not been demonstrated with thin disk lasers so far. The standard thin-disk material Yb:YAG is limited to pulse durations above 700 fs in efficient high power operation. Using Yb:KYW, 22 W of average power were demonstrated in 240-fs pulses [3]. Recently, sesquioxide materials have attracted great attention as a promising candidate for high-power short pulse generation in the thin-disk geometry [4]. For example with Yb:Lu2O3 pulses as short as 329 fs at 40 W [5] and with Yb:LuScO3 pulse durations of 227 fs at 7.2 W [6] have been achieved from a SESAM modelocked thin-disk laser oscillator.\",\"PeriodicalId\":6331,\"journal\":{\"name\":\"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)\",\"volume\":\"25 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEOE.2011.5942502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE.2011.5942502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CW and modelocked operation of an Yb:(Sc,Y,Lu)2O3 thin-disk laser
Recent SESAM modelocked thin disk lasers have achieved average powers > 140 W [1] and pulse energies > 25 µJ [2], which is higher than for any other ultrafast oscillator technology. Many experiments in areas such as high field laser science require pulse durations in the sub-100-fs regime, which has not been demonstrated with thin disk lasers so far. The standard thin-disk material Yb:YAG is limited to pulse durations above 700 fs in efficient high power operation. Using Yb:KYW, 22 W of average power were demonstrated in 240-fs pulses [3]. Recently, sesquioxide materials have attracted great attention as a promising candidate for high-power short pulse generation in the thin-disk geometry [4]. For example with Yb:Lu2O3 pulses as short as 329 fs at 40 W [5] and with Yb:LuScO3 pulse durations of 227 fs at 7.2 W [6] have been achieved from a SESAM modelocked thin-disk laser oscillator.