{"title":"一种新的基于鲁棒共振的小波分解倒谱特征用于音素识别","authors":"Ihsan Al-Hassani, O. Al-Dakkak, Abdlnaser Assami","doi":"10.36478/rjasci.2019.250.257","DOIUrl":null,"url":null,"abstract":"Robust Automatic Speech Recognition (ASR) is a challenging task that has been an active research subject for the last 20 years. And still results are very modest in the highly noisy environments. In this study, we propose a new speech parameterization method based on concatenating two wavelet packet decompositions, one decomposition using low Q-factor wavelet and another with high Q-factor wavelet, to extract speech features suitable for ASR task in noisy conditions. Experiments on TIMIT dataset for phonemes recognition show that the proposed wavelet-based features outperform MFCC in all noisy conditions.","PeriodicalId":21010,"journal":{"name":"Research Journal of Applied Sciences, Engineering and Technology","volume":"1 1","pages":"250-257"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Robust Resonance Based Wavelet Decomposition Cepstral Features for Phoneme Recoszgnition\",\"authors\":\"Ihsan Al-Hassani, O. Al-Dakkak, Abdlnaser Assami\",\"doi\":\"10.36478/rjasci.2019.250.257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robust Automatic Speech Recognition (ASR) is a challenging task that has been an active research subject for the last 20 years. And still results are very modest in the highly noisy environments. In this study, we propose a new speech parameterization method based on concatenating two wavelet packet decompositions, one decomposition using low Q-factor wavelet and another with high Q-factor wavelet, to extract speech features suitable for ASR task in noisy conditions. Experiments on TIMIT dataset for phonemes recognition show that the proposed wavelet-based features outperform MFCC in all noisy conditions.\",\"PeriodicalId\":21010,\"journal\":{\"name\":\"Research Journal of Applied Sciences, Engineering and Technology\",\"volume\":\"1 1\",\"pages\":\"250-257\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Journal of Applied Sciences, Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36478/rjasci.2019.250.257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Journal of Applied Sciences, Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36478/rjasci.2019.250.257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New Robust Resonance Based Wavelet Decomposition Cepstral Features for Phoneme Recoszgnition
Robust Automatic Speech Recognition (ASR) is a challenging task that has been an active research subject for the last 20 years. And still results are very modest in the highly noisy environments. In this study, we propose a new speech parameterization method based on concatenating two wavelet packet decompositions, one decomposition using low Q-factor wavelet and another with high Q-factor wavelet, to extract speech features suitable for ASR task in noisy conditions. Experiments on TIMIT dataset for phonemes recognition show that the proposed wavelet-based features outperform MFCC in all noisy conditions.