{"title":"dS3超重力的渐近对称性和经典全息对偶","authors":"Arindam Bhattacharjee","doi":"10.1103/physrevd.102.126028","DOIUrl":null,"url":null,"abstract":"We consider minimal supergravity on (2+1)dimensional de-Sitter background. We fix the fall-off conditions for gravitini fields in order to fix the asymptotic phase space. Using the Chern-Simons formulation, we then derive the asymptotic symmetry algebra for this theory. The fall-off conditions impose constraints on the phase space which reduces the Chern Simons theory to a WZW model. Further constraints reduce it to a super-Liouville theory at the boundary. This can be treated as a classical dual for the supergravity theory in the bulk.","PeriodicalId":8443,"journal":{"name":"arXiv: High Energy Physics - Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic symmetry and classical holographic dual of \\ndS3\\n supergravity\",\"authors\":\"Arindam Bhattacharjee\",\"doi\":\"10.1103/physrevd.102.126028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider minimal supergravity on (2+1)dimensional de-Sitter background. We fix the fall-off conditions for gravitini fields in order to fix the asymptotic phase space. Using the Chern-Simons formulation, we then derive the asymptotic symmetry algebra for this theory. The fall-off conditions impose constraints on the phase space which reduces the Chern Simons theory to a WZW model. Further constraints reduce it to a super-Liouville theory at the boundary. This can be treated as a classical dual for the supergravity theory in the bulk.\",\"PeriodicalId\":8443,\"journal\":{\"name\":\"arXiv: High Energy Physics - Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Physics - Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.102.126028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevd.102.126028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Asymptotic symmetry and classical holographic dual of
dS3
supergravity
We consider minimal supergravity on (2+1)dimensional de-Sitter background. We fix the fall-off conditions for gravitini fields in order to fix the asymptotic phase space. Using the Chern-Simons formulation, we then derive the asymptotic symmetry algebra for this theory. The fall-off conditions impose constraints on the phase space which reduces the Chern Simons theory to a WZW model. Further constraints reduce it to a super-Liouville theory at the boundary. This can be treated as a classical dual for the supergravity theory in the bulk.