以最小分类误差标准训练的紧凑核分类器

Ryoma Tani, Hideyuki Watanabe, S. Katagiri, M. Ohsaki
{"title":"以最小分类误差标准训练的紧凑核分类器","authors":"Ryoma Tani, Hideyuki Watanabe, S. Katagiri, M. Ohsaki","doi":"10.1109/MLSP.2017.8168184","DOIUrl":null,"url":null,"abstract":"Unlike Support Vector Machine (SVM), Kernel Minimum Classification Error (KMCE) training frees kernels from training samples and jointly optimizes weights and kernel locations. Focusing on this feature of KMCE training, we propose a new method for developing compact (small scale but highly accurate) kernel classifiers by applying KMCE training to support vectors (SVs) that are selected (based on the weight vector norm) from the original SVs produced by the Multi-class SVM (MSVM). We evaluate our proposed method in four classification tasks and clearly demonstrate its effectiveness: only a 3% drop in classification accuracy (from 99.1 to 89.1%) with just 10% of the original SVs. In addition, we mathematically reveal that the value of MSVM's kernel weight indicates the geometric relation between a training sample and margin boundaries.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"71 1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact kernel classifiers trained with minimum classification error criterion\",\"authors\":\"Ryoma Tani, Hideyuki Watanabe, S. Katagiri, M. Ohsaki\",\"doi\":\"10.1109/MLSP.2017.8168184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike Support Vector Machine (SVM), Kernel Minimum Classification Error (KMCE) training frees kernels from training samples and jointly optimizes weights and kernel locations. Focusing on this feature of KMCE training, we propose a new method for developing compact (small scale but highly accurate) kernel classifiers by applying KMCE training to support vectors (SVs) that are selected (based on the weight vector norm) from the original SVs produced by the Multi-class SVM (MSVM). We evaluate our proposed method in four classification tasks and clearly demonstrate its effectiveness: only a 3% drop in classification accuracy (from 99.1 to 89.1%) with just 10% of the original SVs. In addition, we mathematically reveal that the value of MSVM's kernel weight indicates the geometric relation between a training sample and margin boundaries.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"71 1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与支持向量机(SVM)不同,核最小分类误差(KMCE)训练将核从训练样本中解放出来,并联合优化权值和核位置。针对KMCE训练的这一特点,我们提出了一种开发紧凑(小规模但高精度)核分类器的新方法,该方法是将KMCE训练应用于从多类支持向量机(MSVM)产生的原始支持向量(SVs)中选择(基于权重向量范数)的支持向量(SVs)。我们在四个分类任务中评估了我们提出的方法,并清楚地证明了它的有效性:仅使用10%的原始SVs,分类准确率仅下降3%(从99.1降至89.1%)。此外,我们从数学上揭示了MSVM的核权值表示训练样本与边缘边界之间的几何关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compact kernel classifiers trained with minimum classification error criterion
Unlike Support Vector Machine (SVM), Kernel Minimum Classification Error (KMCE) training frees kernels from training samples and jointly optimizes weights and kernel locations. Focusing on this feature of KMCE training, we propose a new method for developing compact (small scale but highly accurate) kernel classifiers by applying KMCE training to support vectors (SVs) that are selected (based on the weight vector norm) from the original SVs produced by the Multi-class SVM (MSVM). We evaluate our proposed method in four classification tasks and clearly demonstrate its effectiveness: only a 3% drop in classification accuracy (from 99.1 to 89.1%) with just 10% of the original SVs. In addition, we mathematically reveal that the value of MSVM's kernel weight indicates the geometric relation between a training sample and margin boundaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classical quadrature rules via Gaussian processes Does speech enhancement work with end-to-end ASR objectives?: Experimental analysis of multichannel end-to-end ASR Differential mutual information forward search for multi-kernel discriminant-component selection with an application to privacy-preserving classification Partitioning in signal processing using the object migration automaton and the pursuit paradigm Inferring room semantics using acoustic monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1