{"title":"12%Cr超超临界转子钢在热变形过程中的动态再结晶行为和内在可加工性","authors":"Yue Xu, Jiansheng Liu","doi":"10.1080/14786435.2023.2224090","DOIUrl":null,"url":null,"abstract":"ABSTRACT Hot deformation of 12%Cr USC rotor steel was investigated by hot compression testing over a temperature range of 900 °C to 1,200 °C at strain rates of 0.001 s−1–1 s−1 with the use of a Gleeble–1500D thermal-mechanical simulator. The true stress–strain curves were obtained and showed that the stress increased with a decrease in temperature, an increase in strain rate, or both. Based on the stress–strain curves, processing maps of 12%Cr USC rotor steel under various strains were established, and the Zener-Hollomon (Z) parameter was calculated, it increased with decreasing temperature or increasing strain rate. Combining the values of the Z parameter and the microstructure after thermal compression, it was found that dynamic recovery was the main softening mechanism at lnZ > 39.09, and dynamic recrystallisation (DRX) became the main softening mechanism at 39.09 > lnZ > 32.56. When lnZ < 32.56, DRX occurred completely, and a small amount of recrystallised grains formed. The deformed microstructures showed that 12%Cr USC rotor steel incurred a continuous dynamic recrystallisation mechanism, a discontinuous dynamic recrystallisation mechanism, and a geometric dynamic recrystallisation mechanism during the hot deformation process. The intrinsic workability of 12%Cr USC rotor steel was explored by analysing the processing maps. It was found that the best forging process parameters range of the material in the actual production process was a deformation temperature range of 1,100 °C to 1,200 °C and a strain-rate range of 0.01 s−1–0.1 s−1.","PeriodicalId":19856,"journal":{"name":"Philosophical Magazine","volume":"1 1","pages":"1603 - 1625"},"PeriodicalIF":1.5000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic recrystallisation behaviour and intrinsic workability of 12%Cr USC rotor steel during hot deformation\",\"authors\":\"Yue Xu, Jiansheng Liu\",\"doi\":\"10.1080/14786435.2023.2224090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Hot deformation of 12%Cr USC rotor steel was investigated by hot compression testing over a temperature range of 900 °C to 1,200 °C at strain rates of 0.001 s−1–1 s−1 with the use of a Gleeble–1500D thermal-mechanical simulator. The true stress–strain curves were obtained and showed that the stress increased with a decrease in temperature, an increase in strain rate, or both. Based on the stress–strain curves, processing maps of 12%Cr USC rotor steel under various strains were established, and the Zener-Hollomon (Z) parameter was calculated, it increased with decreasing temperature or increasing strain rate. Combining the values of the Z parameter and the microstructure after thermal compression, it was found that dynamic recovery was the main softening mechanism at lnZ > 39.09, and dynamic recrystallisation (DRX) became the main softening mechanism at 39.09 > lnZ > 32.56. When lnZ < 32.56, DRX occurred completely, and a small amount of recrystallised grains formed. The deformed microstructures showed that 12%Cr USC rotor steel incurred a continuous dynamic recrystallisation mechanism, a discontinuous dynamic recrystallisation mechanism, and a geometric dynamic recrystallisation mechanism during the hot deformation process. The intrinsic workability of 12%Cr USC rotor steel was explored by analysing the processing maps. It was found that the best forging process parameters range of the material in the actual production process was a deformation temperature range of 1,100 °C to 1,200 °C and a strain-rate range of 0.01 s−1–0.1 s−1.\",\"PeriodicalId\":19856,\"journal\":{\"name\":\"Philosophical Magazine\",\"volume\":\"1 1\",\"pages\":\"1603 - 1625\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Magazine\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14786435.2023.2224090\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14786435.2023.2224090","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic recrystallisation behaviour and intrinsic workability of 12%Cr USC rotor steel during hot deformation
ABSTRACT Hot deformation of 12%Cr USC rotor steel was investigated by hot compression testing over a temperature range of 900 °C to 1,200 °C at strain rates of 0.001 s−1–1 s−1 with the use of a Gleeble–1500D thermal-mechanical simulator. The true stress–strain curves were obtained and showed that the stress increased with a decrease in temperature, an increase in strain rate, or both. Based on the stress–strain curves, processing maps of 12%Cr USC rotor steel under various strains were established, and the Zener-Hollomon (Z) parameter was calculated, it increased with decreasing temperature or increasing strain rate. Combining the values of the Z parameter and the microstructure after thermal compression, it was found that dynamic recovery was the main softening mechanism at lnZ > 39.09, and dynamic recrystallisation (DRX) became the main softening mechanism at 39.09 > lnZ > 32.56. When lnZ < 32.56, DRX occurred completely, and a small amount of recrystallised grains formed. The deformed microstructures showed that 12%Cr USC rotor steel incurred a continuous dynamic recrystallisation mechanism, a discontinuous dynamic recrystallisation mechanism, and a geometric dynamic recrystallisation mechanism during the hot deformation process. The intrinsic workability of 12%Cr USC rotor steel was explored by analysing the processing maps. It was found that the best forging process parameters range of the material in the actual production process was a deformation temperature range of 1,100 °C to 1,200 °C and a strain-rate range of 0.01 s−1–0.1 s−1.
期刊介绍:
The Editors of Philosophical Magazine consider for publication contributions describing original experimental and theoretical results, computational simulations and concepts relating to the structure and properties of condensed matter. The submission of papers on novel measurements, phases, phenomena, and new types of material is encouraged.