{"title":"丙烯酸烷基(甲基)酯光接枝聚乙烯板耐水自粘强度的研究","authors":"Kazunori Yamada, Y. Kazama, Y. Kimura","doi":"10.3390/macromol3030032","DOIUrl":null,"url":null,"abstract":"This study aims to confer autohesive strength to polyethylene (PE) plates by swelling the grafted layers, which were formed on the PE plates grafted with alkyl (meth)acrylate monomers, with 1,4-dioxane, and subsequently heat-pressing them. For the methyl methacrylate (MMA)-grafted PE (PE-g-PMMA) plates, the location of grafting was restricted to the outer surface region and the grafted layer with higher densities of grafted PMMA chains was composed. When the grafted PE plates were immersed in 1,4-dioxane, and then heat-pressed while applying the load, autohesion was developed. The substrate failure was observed for the PE-g-PMMA plates and the grafted amount at which the substrate failure was observed decreased with the procedures that decreased the methanol concentration of the solvent, the MMA concentration, the grafting temperature, and the heat-press temperature, and/or increased the load. The lowest grafted amount of 45 μmol/cm2 for the substrate failure was obtained under the conditions where the PE-g-PMMA plate prepared at 0.75 M and 60 °C in a 70 vol% aqueous methanol solution was heat-pressed at 60 °C while applying the load of 2.0 kg/cm2. The swelling of the grafted layers with 1,4-dioxane considerably contributed to the development of autohesion, bringing the inter-diffusion of grafted PMMA chains and coincident entanglement of grafted PMMA chains during the heat-pressing. The fact that the substrate failure occurred indicates that an autohesive strength higher than the ultimate strength of the used PE plate was obtained. Our approach provides a novel procedure to develop the water-resistant autohesion of PE plates.","PeriodicalId":18139,"journal":{"name":"Macromol","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Water-Resistant Autohesive Strength of Polyethylene Plates with Photografting of Alkyl (Meth)Acrylates\",\"authors\":\"Kazunori Yamada, Y. Kazama, Y. Kimura\",\"doi\":\"10.3390/macromol3030032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to confer autohesive strength to polyethylene (PE) plates by swelling the grafted layers, which were formed on the PE plates grafted with alkyl (meth)acrylate monomers, with 1,4-dioxane, and subsequently heat-pressing them. For the methyl methacrylate (MMA)-grafted PE (PE-g-PMMA) plates, the location of grafting was restricted to the outer surface region and the grafted layer with higher densities of grafted PMMA chains was composed. When the grafted PE plates were immersed in 1,4-dioxane, and then heat-pressed while applying the load, autohesion was developed. The substrate failure was observed for the PE-g-PMMA plates and the grafted amount at which the substrate failure was observed decreased with the procedures that decreased the methanol concentration of the solvent, the MMA concentration, the grafting temperature, and the heat-press temperature, and/or increased the load. The lowest grafted amount of 45 μmol/cm2 for the substrate failure was obtained under the conditions where the PE-g-PMMA plate prepared at 0.75 M and 60 °C in a 70 vol% aqueous methanol solution was heat-pressed at 60 °C while applying the load of 2.0 kg/cm2. The swelling of the grafted layers with 1,4-dioxane considerably contributed to the development of autohesion, bringing the inter-diffusion of grafted PMMA chains and coincident entanglement of grafted PMMA chains during the heat-pressing. The fact that the substrate failure occurred indicates that an autohesive strength higher than the ultimate strength of the used PE plate was obtained. Our approach provides a novel procedure to develop the water-resistant autohesion of PE plates.\",\"PeriodicalId\":18139,\"journal\":{\"name\":\"Macromol\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromol\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/macromol3030032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/macromol3030032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在通过膨胀接枝层来赋予聚乙烯(PE)板自粘强度,接枝层是在用烷基(甲基)丙烯酸酯单体接枝的PE板上形成的,然后用1,4-二恶烷进行热压。对于甲基丙烯酸甲酯(MMA)接枝PE (PE-g-PMMA)板,接枝位置被限制在外表面区域,形成了具有较高接枝PMMA链密度的接枝层。接枝的PE板浸泡在1,4-二氧六烷中,然后在施加载荷的同时进行热压,形成自粘。通过降低溶剂的甲醇浓度、MMA浓度、接枝温度和热压温度,以及/或增加负载,可以观察到PE-g-PMMA板的底物破坏,接枝量随着接枝量的减少而减少。在0.75 M, 60℃条件下制备的PE-g-PMMA板,在70 vol%的甲醇水溶液中,施加2.0 kg/cm2的负载,在60℃下进行热压,接枝量最低,为45 μmol/cm2。在热压过程中,1,4-二恶烷对接枝层的膨胀极大地促进了自粘的发展,导致接枝PMMA链的相互扩散和接枝PMMA链的重合缠结。基材发生破坏的事实表明,所获得的自粘强度高于所用PE板的极限强度。我们的方法为开发PE板的防水自粘提供了一种新的方法。
Development of Water-Resistant Autohesive Strength of Polyethylene Plates with Photografting of Alkyl (Meth)Acrylates
This study aims to confer autohesive strength to polyethylene (PE) plates by swelling the grafted layers, which were formed on the PE plates grafted with alkyl (meth)acrylate monomers, with 1,4-dioxane, and subsequently heat-pressing them. For the methyl methacrylate (MMA)-grafted PE (PE-g-PMMA) plates, the location of grafting was restricted to the outer surface region and the grafted layer with higher densities of grafted PMMA chains was composed. When the grafted PE plates were immersed in 1,4-dioxane, and then heat-pressed while applying the load, autohesion was developed. The substrate failure was observed for the PE-g-PMMA plates and the grafted amount at which the substrate failure was observed decreased with the procedures that decreased the methanol concentration of the solvent, the MMA concentration, the grafting temperature, and the heat-press temperature, and/or increased the load. The lowest grafted amount of 45 μmol/cm2 for the substrate failure was obtained under the conditions where the PE-g-PMMA plate prepared at 0.75 M and 60 °C in a 70 vol% aqueous methanol solution was heat-pressed at 60 °C while applying the load of 2.0 kg/cm2. The swelling of the grafted layers with 1,4-dioxane considerably contributed to the development of autohesion, bringing the inter-diffusion of grafted PMMA chains and coincident entanglement of grafted PMMA chains during the heat-pressing. The fact that the substrate failure occurred indicates that an autohesive strength higher than the ultimate strength of the used PE plate was obtained. Our approach provides a novel procedure to develop the water-resistant autohesion of PE plates.