不同类型相关质量变量的监测与诊断

IF 2.6 2区 工程技术 Q2 ENGINEERING, INDUSTRIAL Journal of Quality Technology Pub Date : 2022-08-22 DOI:10.1080/00224065.2022.2109533
Wei-Heng Huang, Jing Sun, A. Yeh
{"title":"不同类型相关质量变量的监测与诊断","authors":"Wei-Heng Huang, Jing Sun, A. Yeh","doi":"10.1080/00224065.2022.2109533","DOIUrl":null,"url":null,"abstract":"Abstract As data acquisition and processing technologies continue to advance rapidly, new challenges emerge for statistical process monitoring. One such challenge, especially in the era of big data analytics, is monitoring multivariate processes involving a mixture of continuous, categorical, and discrete quality variables. The existing multivariate control charts focus mostly on monitoring correlated variables of the same type. We propose a new Phase II control chart that is based on a modified Holm’s step-down multiple testing procedure (Holm 1979) which achieves two important goals at the same time: (1) it simultaneously monitors correlated variables of different types, while keeping the probability of false alarm under desirable level, and (2) when the process is determined to be out of control, it further provides, without any additional efforts, diagnostics to pinpoint which parameters are out of control. The proposed chart is shown to outperform the existing charts particularly in its ability to provide more accurate diagnostics.","PeriodicalId":54769,"journal":{"name":"Journal of Quality Technology","volume":"36 1","pages":"220 - 252"},"PeriodicalIF":2.6000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring and diagnostics of correlated quality variables of different types\",\"authors\":\"Wei-Heng Huang, Jing Sun, A. Yeh\",\"doi\":\"10.1080/00224065.2022.2109533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract As data acquisition and processing technologies continue to advance rapidly, new challenges emerge for statistical process monitoring. One such challenge, especially in the era of big data analytics, is monitoring multivariate processes involving a mixture of continuous, categorical, and discrete quality variables. The existing multivariate control charts focus mostly on monitoring correlated variables of the same type. We propose a new Phase II control chart that is based on a modified Holm’s step-down multiple testing procedure (Holm 1979) which achieves two important goals at the same time: (1) it simultaneously monitors correlated variables of different types, while keeping the probability of false alarm under desirable level, and (2) when the process is determined to be out of control, it further provides, without any additional efforts, diagnostics to pinpoint which parameters are out of control. The proposed chart is shown to outperform the existing charts particularly in its ability to provide more accurate diagnostics.\",\"PeriodicalId\":54769,\"journal\":{\"name\":\"Journal of Quality Technology\",\"volume\":\"36 1\",\"pages\":\"220 - 252\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quality Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00224065.2022.2109533\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00224065.2022.2109533","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

随着数据采集和处理技术的快速发展,统计过程监控面临着新的挑战。其中一个挑战,特别是在大数据分析时代,是监测涉及连续、分类和离散质量变量混合的多变量过程。现有的多变量控制图多侧重于监测同类型的相关变量。我们提出了一个新的II期控制图,该控制图基于改进的Holm降压多重测试程序(Holm 1979),同时实现了两个重要目标:(1)它同时监测不同类型的相关变量,同时保持误报警的概率在理想的水平下;(2)当确定过程失控时,它进一步提供诊断,而无需任何额外的努力,以查明哪些参数失控。所提出的图表优于现有图表,特别是在提供更准确诊断的能力方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring and diagnostics of correlated quality variables of different types
Abstract As data acquisition and processing technologies continue to advance rapidly, new challenges emerge for statistical process monitoring. One such challenge, especially in the era of big data analytics, is monitoring multivariate processes involving a mixture of continuous, categorical, and discrete quality variables. The existing multivariate control charts focus mostly on monitoring correlated variables of the same type. We propose a new Phase II control chart that is based on a modified Holm’s step-down multiple testing procedure (Holm 1979) which achieves two important goals at the same time: (1) it simultaneously monitors correlated variables of different types, while keeping the probability of false alarm under desirable level, and (2) when the process is determined to be out of control, it further provides, without any additional efforts, diagnostics to pinpoint which parameters are out of control. The proposed chart is shown to outperform the existing charts particularly in its ability to provide more accurate diagnostics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Quality Technology
Journal of Quality Technology 管理科学-工程:工业
CiteScore
5.20
自引率
4.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: The objective of Journal of Quality Technology is to contribute to the technical advancement of the field of quality technology by publishing papers that emphasize the practical applicability of new techniques, instructive examples of the operation of existing techniques and results of historical researches. Expository, review, and tutorial papers are also acceptable if they are written in a style suitable for practicing engineers. Sample our Mathematics & Statistics journals, sign in here to start your FREE access for 14 days
期刊最新文献
SpTe2M: An R package for nonparametric modeling and monitoring of spatiotemporal data Spatial modeling and monitoring considering long-range dependence A change-point–based control chart for detecting sparse mean changes in high-dimensional heteroscedastic data Best practices for multi- and mixed-level supersaturated designs Sequential Latin hypercube design for two-layer computer simulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1