S. Eremin, V. N. Anikin, D. Rudenko, A. M. Kolesnikova, Y. Sobolev, V. Kuzin, M. Fedorov, N. A. Revyakina
{"title":"多层石墨烯对硬质合金极板电阻的影响","authors":"S. Eremin, V. N. Anikin, D. Rudenko, A. M. Kolesnikova, Y. Sobolev, V. Kuzin, M. Fedorov, N. A. Revyakina","doi":"10.30791/1028-978x-2023-7-65-72","DOIUrl":null,"url":null,"abstract":"In the work, experiments were carried out on the production and testing of hard alloys from powders of the VK10KHOM and VRK15 grades coated with multigraphene obtained by the electrochemical method. Samples with multigraphene were sintered under standard conditions for grades VK10KHOM and VRK15. In the weight ratio, the amount of multigraphene was 0.1 wt. % for the VK10KHOM grade alloy and 0.1 wt. % and 0.5 wt. % for the VRK15 grade. Friction tests of VK10KhOM samples showed that the width of the wear areas of samples with multigraphene is 8 % less than in the original ones. At 0.1 wt. % graphene, the density of the VK10KHOM grade is 14.5 and VRK15 is 14.0, and the porosity is 0.02 % and 2 %, respectively. Comparative tests were carried out on cutting titanium grade VT-3. As a result of cutting, it was found that the coating of powders with multigraphene increases the resistance of carbide inserts of both grades. It is shown that for VRK15 the plate durability increased by 4 times, and for the VK10KHOM grade it was not possible to establish the plate failure time. The increase in wear resistance is presumably caused by a decrease in the coefficient of friction due to multigraphene, which, dissolving in the hard alloy, precipitates in the form of nanographite clusters.","PeriodicalId":20003,"journal":{"name":"Perspektivnye Materialy","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of multigraphene on the resistance of plates from hard alloys\",\"authors\":\"S. Eremin, V. N. Anikin, D. Rudenko, A. M. Kolesnikova, Y. Sobolev, V. Kuzin, M. Fedorov, N. A. Revyakina\",\"doi\":\"10.30791/1028-978x-2023-7-65-72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the work, experiments were carried out on the production and testing of hard alloys from powders of the VK10KHOM and VRK15 grades coated with multigraphene obtained by the electrochemical method. Samples with multigraphene were sintered under standard conditions for grades VK10KHOM and VRK15. In the weight ratio, the amount of multigraphene was 0.1 wt. % for the VK10KHOM grade alloy and 0.1 wt. % and 0.5 wt. % for the VRK15 grade. Friction tests of VK10KhOM samples showed that the width of the wear areas of samples with multigraphene is 8 % less than in the original ones. At 0.1 wt. % graphene, the density of the VK10KHOM grade is 14.5 and VRK15 is 14.0, and the porosity is 0.02 % and 2 %, respectively. Comparative tests were carried out on cutting titanium grade VT-3. As a result of cutting, it was found that the coating of powders with multigraphene increases the resistance of carbide inserts of both grades. It is shown that for VRK15 the plate durability increased by 4 times, and for the VK10KHOM grade it was not possible to establish the plate failure time. The increase in wear resistance is presumably caused by a decrease in the coefficient of friction due to multigraphene, which, dissolving in the hard alloy, precipitates in the form of nanographite clusters.\",\"PeriodicalId\":20003,\"journal\":{\"name\":\"Perspektivnye Materialy\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Perspektivnye Materialy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30791/1028-978x-2023-7-65-72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perspektivnye Materialy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30791/1028-978x-2023-7-65-72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of multigraphene on the resistance of plates from hard alloys
In the work, experiments were carried out on the production and testing of hard alloys from powders of the VK10KHOM and VRK15 grades coated with multigraphene obtained by the electrochemical method. Samples with multigraphene were sintered under standard conditions for grades VK10KHOM and VRK15. In the weight ratio, the amount of multigraphene was 0.1 wt. % for the VK10KHOM grade alloy and 0.1 wt. % and 0.5 wt. % for the VRK15 grade. Friction tests of VK10KhOM samples showed that the width of the wear areas of samples with multigraphene is 8 % less than in the original ones. At 0.1 wt. % graphene, the density of the VK10KHOM grade is 14.5 and VRK15 is 14.0, and the porosity is 0.02 % and 2 %, respectively. Comparative tests were carried out on cutting titanium grade VT-3. As a result of cutting, it was found that the coating of powders with multigraphene increases the resistance of carbide inserts of both grades. It is shown that for VRK15 the plate durability increased by 4 times, and for the VK10KHOM grade it was not possible to establish the plate failure time. The increase in wear resistance is presumably caused by a decrease in the coefficient of friction due to multigraphene, which, dissolving in the hard alloy, precipitates in the form of nanographite clusters.