常压常温下功率斜坡试验的可行性研究

IF 0.4 Q4 NUCLEAR SCIENCE & TECHNOLOGY Journal of Nuclear Fuel Cycle and Waste Technology Pub Date : 2022-08-08 DOI:10.1115/icone29-93417
Xiangyu Wei, Wenhua Zhang, Yingchun Zhao
{"title":"常压常温下功率斜坡试验的可行性研究","authors":"Xiangyu Wei, Wenhua Zhang, Yingchun Zhao","doi":"10.1115/icone29-93417","DOIUrl":null,"url":null,"abstract":"\n Pellet-to-cladding mechanical interaction is an important physical phenomenon during reactor power change as well as a multi-phenomenal fuel rod failure mechanism involving stress, strain and material irradiation properties. In order to avoid the failure caused by PCMI, a large number of power ramp tests have been carried out by international organizations over the past decades. The typical way of power ramp test in a high temperature and pressure loop requires stringent test capabilities and high test costs. The key parameters of the PCMI phenomena are stress and strain of cladding, which are generally chosen as the evaluation indicators of PCMI. If it is possible to simulate the pellet-to-cladding contact state, i.e. the gap between pellet and cladding under basic irradiation power level in atmospheric pressure and ordinary temperature environment, then the high stress and strain state of the cladding during the subsequent power ramp test could also be simulated in the same environment, which means lower test costs and test loop requirements. Therefore, a sensitivity analysis using the fuel rod performance analysis code RoPE, was carried out on factors such as initial pellet-to-cladding gap and fuel densification in the power ramp test rod design. By adapting the manufacturing parameters of the test rod and coolant conditions, the high stress and strain state of the cladding could be simulated in the test environment at normal temperature and pressure. The sensitivity analysis provides a theoretical basis for conducting power ramp tests in an atmospheric pressure and ordinary temperature loop.","PeriodicalId":36762,"journal":{"name":"Journal of Nuclear Fuel Cycle and Waste Technology","volume":"46 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility Study on Power Ramp Test Under Atmospheric Pressure and Ordinary Temperature\",\"authors\":\"Xiangyu Wei, Wenhua Zhang, Yingchun Zhao\",\"doi\":\"10.1115/icone29-93417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Pellet-to-cladding mechanical interaction is an important physical phenomenon during reactor power change as well as a multi-phenomenal fuel rod failure mechanism involving stress, strain and material irradiation properties. In order to avoid the failure caused by PCMI, a large number of power ramp tests have been carried out by international organizations over the past decades. The typical way of power ramp test in a high temperature and pressure loop requires stringent test capabilities and high test costs. The key parameters of the PCMI phenomena are stress and strain of cladding, which are generally chosen as the evaluation indicators of PCMI. If it is possible to simulate the pellet-to-cladding contact state, i.e. the gap between pellet and cladding under basic irradiation power level in atmospheric pressure and ordinary temperature environment, then the high stress and strain state of the cladding during the subsequent power ramp test could also be simulated in the same environment, which means lower test costs and test loop requirements. Therefore, a sensitivity analysis using the fuel rod performance analysis code RoPE, was carried out on factors such as initial pellet-to-cladding gap and fuel densification in the power ramp test rod design. By adapting the manufacturing parameters of the test rod and coolant conditions, the high stress and strain state of the cladding could be simulated in the test environment at normal temperature and pressure. The sensitivity analysis provides a theoretical basis for conducting power ramp tests in an atmospheric pressure and ordinary temperature loop.\",\"PeriodicalId\":36762,\"journal\":{\"name\":\"Journal of Nuclear Fuel Cycle and Waste Technology\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Fuel Cycle and Waste Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone29-93417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Fuel Cycle and Waste Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone29-93417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

球团-包壳力学相互作用是反应堆功率变化过程中重要的物理现象,是一种涉及应力、应变和材料辐照特性的多现象燃料棒失效机制。为了避免PCMI引起的故障,国际组织在过去几十年中进行了大量的功率斜坡试验。在高温高压回路中进行典型的功率斜坡测试需要严格的测试能力和较高的测试成本。熔覆层的应力和应变是影响熔覆现象的关键参数,通常作为熔覆层应力和应变的评价指标。如果能够模拟常压和常温环境下基本辐照功率水平下球团与包层的接触状态,即球团与包层之间的间隙,那么在相同的环境下也可以模拟后续功率斜坡试验中包层的高应力应变状态,从而降低试验成本和试验回路要求。因此,利用燃料棒性能分析程序RoPE,对动力斜坡试验棒设计中的初始球团与包壳间隙和燃料密度等因素进行敏感性分析。通过调整试验棒的制造参数和冷却剂条件,可以模拟常温常压试验环境下熔覆层的高应力应变状态。灵敏度分析为在常压和常温回路中进行功率斜坡试验提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feasibility Study on Power Ramp Test Under Atmospheric Pressure and Ordinary Temperature
Pellet-to-cladding mechanical interaction is an important physical phenomenon during reactor power change as well as a multi-phenomenal fuel rod failure mechanism involving stress, strain and material irradiation properties. In order to avoid the failure caused by PCMI, a large number of power ramp tests have been carried out by international organizations over the past decades. The typical way of power ramp test in a high temperature and pressure loop requires stringent test capabilities and high test costs. The key parameters of the PCMI phenomena are stress and strain of cladding, which are generally chosen as the evaluation indicators of PCMI. If it is possible to simulate the pellet-to-cladding contact state, i.e. the gap between pellet and cladding under basic irradiation power level in atmospheric pressure and ordinary temperature environment, then the high stress and strain state of the cladding during the subsequent power ramp test could also be simulated in the same environment, which means lower test costs and test loop requirements. Therefore, a sensitivity analysis using the fuel rod performance analysis code RoPE, was carried out on factors such as initial pellet-to-cladding gap and fuel densification in the power ramp test rod design. By adapting the manufacturing parameters of the test rod and coolant conditions, the high stress and strain state of the cladding could be simulated in the test environment at normal temperature and pressure. The sensitivity analysis provides a theoretical basis for conducting power ramp tests in an atmospheric pressure and ordinary temperature loop.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
25.00%
发文量
35
期刊最新文献
Transport Risk Assessment for On-Road/Sea Transport of Decommissioning Waste of Kori Unit 1 Physicochemical Property of Borosilicate Glass for Rare Earth Waste From the PyroGreen Process Occupational Dose Analysis of Spent Resin Handling Accident During NPP Decommissioning Fissile Measurement in Various Types Using Nuclear Resonances Prediction Model for Saturated Hydraulic Conductivity of Bentonite Buffer Materials for an Engineered-Barrier System in a High-Level Radioactive Waste Repository
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1