{"title":"基于单片机的直流电动机同步速度控制器","authors":"A. Shahzad, M. Kashif, T. Munir, M. He","doi":"10.5772/intechopen.93080","DOIUrl":null,"url":null,"abstract":"In this chapter, we report the design and fabrication of an improved speed synchronizer device in which two dc motors has been controlled on different sequences programmed by microcontroller. Depending on the programmed software, the device is used to command a rolling of machines, synchronizes the dc motors speed, and displays the result on liquid crystal display (LCD). Flash memory of the microcontroller is used to program for controlling this device where permanent memory is needed to store different parameters (codes for motor speed, LCD display, ratio control, and rotary encoder’s feedback). The present simulation gives new reliable results with better performance for the speed and direction than the earlier available synchronizers. It has been shown that the speed and direction are dependent on both the ratio setting and frequency of encoder in two dc motors speed synchronizer. It is shown that this device is applicable for controlling, monitoring, and synchronizing identical processes and can be implemented in multiple domains, from textile industry and home control applications to industrial instruments.","PeriodicalId":45089,"journal":{"name":"International Journal of Automation and Control","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DC Motor Synchronization Speed Controller Based on Microcontroller\",\"authors\":\"A. Shahzad, M. Kashif, T. Munir, M. He\",\"doi\":\"10.5772/intechopen.93080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, we report the design and fabrication of an improved speed synchronizer device in which two dc motors has been controlled on different sequences programmed by microcontroller. Depending on the programmed software, the device is used to command a rolling of machines, synchronizes the dc motors speed, and displays the result on liquid crystal display (LCD). Flash memory of the microcontroller is used to program for controlling this device where permanent memory is needed to store different parameters (codes for motor speed, LCD display, ratio control, and rotary encoder’s feedback). The present simulation gives new reliable results with better performance for the speed and direction than the earlier available synchronizers. It has been shown that the speed and direction are dependent on both the ratio setting and frequency of encoder in two dc motors speed synchronizer. It is shown that this device is applicable for controlling, monitoring, and synchronizing identical processes and can be implemented in multiple domains, from textile industry and home control applications to industrial instruments.\",\"PeriodicalId\":45089,\"journal\":{\"name\":\"International Journal of Automation and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automation and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.93080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.93080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
DC Motor Synchronization Speed Controller Based on Microcontroller
In this chapter, we report the design and fabrication of an improved speed synchronizer device in which two dc motors has been controlled on different sequences programmed by microcontroller. Depending on the programmed software, the device is used to command a rolling of machines, synchronizes the dc motors speed, and displays the result on liquid crystal display (LCD). Flash memory of the microcontroller is used to program for controlling this device where permanent memory is needed to store different parameters (codes for motor speed, LCD display, ratio control, and rotary encoder’s feedback). The present simulation gives new reliable results with better performance for the speed and direction than the earlier available synchronizers. It has been shown that the speed and direction are dependent on both the ratio setting and frequency of encoder in two dc motors speed synchronizer. It is shown that this device is applicable for controlling, monitoring, and synchronizing identical processes and can be implemented in multiple domains, from textile industry and home control applications to industrial instruments.
期刊介绍:
IJAAC addresses the evolution and realisation of the theory, algorithms, techniques, schemes and tools for any kind of automation and control platforms including macro, micro and nano scale machineries and systems, with emphasis on implications that state-of-the-art technology choices have on both the feasibility and practicability of the intended applications. This perspective acknowledges the complexity of the automation, instrumentation and process control methods and delineates itself as an interface between the theory and practice existing in parallel over diverse spheres. Topics covered include: -Control theory and practice- Identification and modelling- Mechatronics- Application of soft computing- Real-time issues- Distributed control and remote monitoring- System integration- Fault detection and isolation (FDI)- Virtual instrumentation and control- Fieldbus technology and interfaces- Agriculture, environment, health applications- Industry, military, space applications