高吸水性丝素水凝胶

K. Cheng, Xiaosheng Tao, Jiaxin Cao, Zuqiang Yin, S. Kundu, Shenzhou Lu
{"title":"高吸水性丝素水凝胶","authors":"K. Cheng, Xiaosheng Tao, Jiaxin Cao, Zuqiang Yin, S. Kundu, Shenzhou Lu","doi":"10.2139/ssrn.3784440","DOIUrl":null,"url":null,"abstract":"Super absorbent polymers have a wide range of applications in the fields of biomaterials, agriculture, physiological products of daily-uses, and others. Silk fibroin, as a natural biomaterial with excellent biocompatibility, is showing a good prospect of applications in the field of biomedicine. In this work, silk protein fibroin is used as the carrier, riboflavin as the photosensitizer, and accordingly hydrogel is prepared by free radical cross-linking under ultraviolet light. The fibroin in the hydrogel contains mainly the random coil structure, and the covalent bond cross-linking hinders the crystallization of the silk fibroin, thereby an amorphous silk fibroin hydrogel is obtained. This hydrogel has a capacity to absorb water 90 times more than its own mass, a fast water absorption speed, and absorbs a good amount of water within a minute. This fabricated silk protein fibroin hydrogel having a quick water-absorbing ability; therefore, this can be used for rapid hemostasis of wounds and for absorbing other body exudates.","PeriodicalId":11894,"journal":{"name":"EngRN: Biomaterials (Topic)","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super Absorbent Silk Fibroin Hydrogel\",\"authors\":\"K. Cheng, Xiaosheng Tao, Jiaxin Cao, Zuqiang Yin, S. Kundu, Shenzhou Lu\",\"doi\":\"10.2139/ssrn.3784440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Super absorbent polymers have a wide range of applications in the fields of biomaterials, agriculture, physiological products of daily-uses, and others. Silk fibroin, as a natural biomaterial with excellent biocompatibility, is showing a good prospect of applications in the field of biomedicine. In this work, silk protein fibroin is used as the carrier, riboflavin as the photosensitizer, and accordingly hydrogel is prepared by free radical cross-linking under ultraviolet light. The fibroin in the hydrogel contains mainly the random coil structure, and the covalent bond cross-linking hinders the crystallization of the silk fibroin, thereby an amorphous silk fibroin hydrogel is obtained. This hydrogel has a capacity to absorb water 90 times more than its own mass, a fast water absorption speed, and absorbs a good amount of water within a minute. This fabricated silk protein fibroin hydrogel having a quick water-absorbing ability; therefore, this can be used for rapid hemostasis of wounds and for absorbing other body exudates.\",\"PeriodicalId\":11894,\"journal\":{\"name\":\"EngRN: Biomaterials (Topic)\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EngRN: Biomaterials (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3784440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Biomaterials (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3784440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高吸水性聚合物在生物材料、农业、日用生理产品等领域有着广泛的应用。丝素蛋白作为一种具有良好生物相容性的天然生物材料,在生物医学领域显示出良好的应用前景。本研究以丝素蛋白为载体,核黄素为光敏剂,在紫外光下通过自由基交联制备水凝胶。水凝胶中的丝素蛋白主要含有无序的线圈结构,共价键交联阻碍了丝素蛋白的结晶,从而得到了无定形的丝素蛋白水凝胶。这种水凝胶的吸水能力是自身质量的90倍,吸水速度快,一分钟内就能吸收大量的水。该制备的丝蛋白丝素水凝胶具有快速吸水能力;因此,这可以用于伤口的快速止血和吸收其他身体渗出物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Super Absorbent Silk Fibroin Hydrogel
Super absorbent polymers have a wide range of applications in the fields of biomaterials, agriculture, physiological products of daily-uses, and others. Silk fibroin, as a natural biomaterial with excellent biocompatibility, is showing a good prospect of applications in the field of biomedicine. In this work, silk protein fibroin is used as the carrier, riboflavin as the photosensitizer, and accordingly hydrogel is prepared by free radical cross-linking under ultraviolet light. The fibroin in the hydrogel contains mainly the random coil structure, and the covalent bond cross-linking hinders the crystallization of the silk fibroin, thereby an amorphous silk fibroin hydrogel is obtained. This hydrogel has a capacity to absorb water 90 times more than its own mass, a fast water absorption speed, and absorbs a good amount of water within a minute. This fabricated silk protein fibroin hydrogel having a quick water-absorbing ability; therefore, this can be used for rapid hemostasis of wounds and for absorbing other body exudates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reversible Molecular Motional Switch Based on Circular Photoactive Protein Oligomers: Unexpected Photo-Induced Contraction 3D Bioprinting of Prevascularised Implants for the Repair of Critically Sized Bone Defects Super Absorbent Silk Fibroin Hydrogel Thiophene Donor for NIR-II Fluorescence Imaging Guided Photothermal/Photodynamic/Chemo Combination Therapy Efficient Delivery of Cytosolic Proteins by Protein-Hexahistidine-Metal Co-Assemblies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1