{"title":"具有模糊和随机混合不确定性的投资组合优化问题的均值半方差模型","authors":"Z. Qin, D. Wang, Xiang Li","doi":"10.1142/S0218488513400102","DOIUrl":null,"url":null,"abstract":"In practice, security returns cannot be accurately predicted due to lack of historical data. Therefore, statistical methods and experts' experience are always integrated to estimate future security returns, which are hereinafter regarded as random fuzzy variables. Random fuzzy variable is a powerful tool to deal with the portfolio optimization problem including stochastic parameters with ambiguous expected returns. In this paper, we first define the semivariance of random fuzzy variable and prove its several properties. By considering the semivariance as a risk measure, we establish the mean-semivariance models for portfolio optimization problem with random fuzzy returns. We design a hybrid algorithm with random fuzzy simulation to solve the proposed models in general cases. Finally, we present a numerical example and compare the results to illustrate the mean-semivariance model and the effectiveness of the algorithm.","PeriodicalId":50283,"journal":{"name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","volume":"74 1","pages":"127-139"},"PeriodicalIF":1.0000,"publicationDate":"2013-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"MEAN-SEMIVARIANCE MODELS FOR PORTFOLIO OPTIMIZATION PROBLEM WITH MIXED UNCERTAINTY OF FUZZINESS AND RANDOMNESS\",\"authors\":\"Z. Qin, D. Wang, Xiang Li\",\"doi\":\"10.1142/S0218488513400102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In practice, security returns cannot be accurately predicted due to lack of historical data. Therefore, statistical methods and experts' experience are always integrated to estimate future security returns, which are hereinafter regarded as random fuzzy variables. Random fuzzy variable is a powerful tool to deal with the portfolio optimization problem including stochastic parameters with ambiguous expected returns. In this paper, we first define the semivariance of random fuzzy variable and prove its several properties. By considering the semivariance as a risk measure, we establish the mean-semivariance models for portfolio optimization problem with random fuzzy returns. We design a hybrid algorithm with random fuzzy simulation to solve the proposed models in general cases. Finally, we present a numerical example and compare the results to illustrate the mean-semivariance model and the effectiveness of the algorithm.\",\"PeriodicalId\":50283,\"journal\":{\"name\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"volume\":\"74 1\",\"pages\":\"127-139\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2013-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218488513400102\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0218488513400102","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
MEAN-SEMIVARIANCE MODELS FOR PORTFOLIO OPTIMIZATION PROBLEM WITH MIXED UNCERTAINTY OF FUZZINESS AND RANDOMNESS
In practice, security returns cannot be accurately predicted due to lack of historical data. Therefore, statistical methods and experts' experience are always integrated to estimate future security returns, which are hereinafter regarded as random fuzzy variables. Random fuzzy variable is a powerful tool to deal with the portfolio optimization problem including stochastic parameters with ambiguous expected returns. In this paper, we first define the semivariance of random fuzzy variable and prove its several properties. By considering the semivariance as a risk measure, we establish the mean-semivariance models for portfolio optimization problem with random fuzzy returns. We design a hybrid algorithm with random fuzzy simulation to solve the proposed models in general cases. Finally, we present a numerical example and compare the results to illustrate the mean-semivariance model and the effectiveness of the algorithm.
期刊介绍:
The International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems is a forum for research on various methodologies for the management of imprecise, vague, uncertain or incomplete information. The aim of the journal is to promote theoretical or methodological works dealing with all kinds of methods to represent and manipulate imperfectly described pieces of knowledge, excluding results on pure mathematics or simple applications of existing theoretical results. It is published bimonthly, with worldwide distribution to researchers, engineers, decision-makers, and educators.