{"title":"刀具用TiN、TiAlN和AlTiN硬质涂层的研究","authors":"M. Lungu","doi":"10.13005/MSRI/170202","DOIUrl":null,"url":null,"abstract":"Hard coatings can be grown on the tool surface at a maximum deposition temperature of 1000°C for CVD and 500°C for PVD. The thickness of CVD and PVD coatings can be over 20 μm, and up to 10-15 μm, respectively. In industrial production, 0.5-4 μm thick PVD coatings are usually selected for specific applications. Coating architecture can be designed as a single layer, multilayer, graded, nanostructured or nanocomposite layer.","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"23 1","pages":"87-89"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Insight into TiN, TiAlN and AlTiN Hard Coatings for Cutting Tools\",\"authors\":\"M. Lungu\",\"doi\":\"10.13005/MSRI/170202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hard coatings can be grown on the tool surface at a maximum deposition temperature of 1000°C for CVD and 500°C for PVD. The thickness of CVD and PVD coatings can be over 20 μm, and up to 10-15 μm, respectively. In industrial production, 0.5-4 μm thick PVD coatings are usually selected for specific applications. Coating architecture can be designed as a single layer, multilayer, graded, nanostructured or nanocomposite layer.\",\"PeriodicalId\":18247,\"journal\":{\"name\":\"Material Science Research India\",\"volume\":\"23 1\",\"pages\":\"87-89\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Material Science Research India\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13005/MSRI/170202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science Research India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/MSRI/170202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Insight into TiN, TiAlN and AlTiN Hard Coatings for Cutting Tools
Hard coatings can be grown on the tool surface at a maximum deposition temperature of 1000°C for CVD and 500°C for PVD. The thickness of CVD and PVD coatings can be over 20 μm, and up to 10-15 μm, respectively. In industrial production, 0.5-4 μm thick PVD coatings are usually selected for specific applications. Coating architecture can be designed as a single layer, multilayer, graded, nanostructured or nanocomposite layer.