{"title":"异构CPU/GPU系统的查询处理","authors":"Viktor Rosenfeld, S. Breß, V. Markl","doi":"10.1145/3485126","DOIUrl":null,"url":null,"abstract":"Due to their high computational power and internal memory bandwidth, graphic processing units (GPUs) have been extensively studied by the database systems research community. A heterogeneous query processing system that employs CPUs and GPUs at the same time has to solve many challenges, including how to distribute the workload on processors with different capabilities; how to overcome the data transfer bottleneck; and how to support implementations for multiple processors efficiently. In this survey we devise a classification scheme to categorize techniques developed to address these challenges. Based on this scheme, we categorize query processing systems on heterogeneous CPU/GPU systems and identify open research problems.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"37 1","pages":"1 - 38"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Query Processing on Heterogeneous CPU/GPU Systems\",\"authors\":\"Viktor Rosenfeld, S. Breß, V. Markl\",\"doi\":\"10.1145/3485126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to their high computational power and internal memory bandwidth, graphic processing units (GPUs) have been extensively studied by the database systems research community. A heterogeneous query processing system that employs CPUs and GPUs at the same time has to solve many challenges, including how to distribute the workload on processors with different capabilities; how to overcome the data transfer bottleneck; and how to support implementations for multiple processors efficiently. In this survey we devise a classification scheme to categorize techniques developed to address these challenges. Based on this scheme, we categorize query processing systems on heterogeneous CPU/GPU systems and identify open research problems.\",\"PeriodicalId\":7000,\"journal\":{\"name\":\"ACM Computing Surveys (CSUR)\",\"volume\":\"37 1\",\"pages\":\"1 - 38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys (CSUR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3485126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys (CSUR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Due to their high computational power and internal memory bandwidth, graphic processing units (GPUs) have been extensively studied by the database systems research community. A heterogeneous query processing system that employs CPUs and GPUs at the same time has to solve many challenges, including how to distribute the workload on processors with different capabilities; how to overcome the data transfer bottleneck; and how to support implementations for multiple processors efficiently. In this survey we devise a classification scheme to categorize techniques developed to address these challenges. Based on this scheme, we categorize query processing systems on heterogeneous CPU/GPU systems and identify open research problems.