将草图转换为逼真的图像:利用机器学习和图像处理增强建筑可视化

I. Karadag
{"title":"将草图转换为逼真的图像:利用机器学习和图像处理增强建筑可视化","authors":"I. Karadag","doi":"10.16984/saufenbilder.1319166","DOIUrl":null,"url":null,"abstract":"This article presents a novel approach for transforming architectural sketches into realistic images through the utilization of machine learning and image processing techniques. The proposed method leverages the Stable Diffusion model, a deep learning framework specifically designed for text-to-image generation. By integrating image processing algorithms into the workflow, the model gains a better understanding of the input sketches, resulting in visually coherent and meaningful output images. The study explores the application of the Stable Diffusion model in the context of architectural design, showcasing its potential to enhance the visualization process and support designers in generating accurate and compelling representations. The efficacy of the method is evaluated through qualitative and quantitative assessments, demonstrating its effectiveness in bridging the gap between initial sketches and photorealistic renderings. This research contributes to the growing body of knowledge on the integration of machine learning and image processing in architecture, providing insights and practical implications for design professionals and researchers in the field.","PeriodicalId":21468,"journal":{"name":"Sakarya University Journal of Science","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transforming Sketches into Realistic Images: Leveraging Machine Learning and Image Processing for Enhanced Architectural Visualization\",\"authors\":\"I. Karadag\",\"doi\":\"10.16984/saufenbilder.1319166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a novel approach for transforming architectural sketches into realistic images through the utilization of machine learning and image processing techniques. The proposed method leverages the Stable Diffusion model, a deep learning framework specifically designed for text-to-image generation. By integrating image processing algorithms into the workflow, the model gains a better understanding of the input sketches, resulting in visually coherent and meaningful output images. The study explores the application of the Stable Diffusion model in the context of architectural design, showcasing its potential to enhance the visualization process and support designers in generating accurate and compelling representations. The efficacy of the method is evaluated through qualitative and quantitative assessments, demonstrating its effectiveness in bridging the gap between initial sketches and photorealistic renderings. This research contributes to the growing body of knowledge on the integration of machine learning and image processing in architecture, providing insights and practical implications for design professionals and researchers in the field.\",\"PeriodicalId\":21468,\"journal\":{\"name\":\"Sakarya University Journal of Science\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sakarya University Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.16984/saufenbilder.1319166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16984/saufenbilder.1319166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用机器学习和图像处理技术将建筑草图转换为逼真图像的新方法。该方法利用了稳定扩散模型,这是一种专门为文本到图像生成而设计的深度学习框架。通过将图像处理算法集成到工作流中,该模型可以更好地理解输入的草图,从而产生视觉上连贯且有意义的输出图像。该研究探讨了稳定扩散模型在建筑设计中的应用,展示了它在增强可视化过程和支持设计师生成准确和引人注目的表现方面的潜力。该方法的有效性通过定性和定量评估来评估,证明其在弥合初始草图和逼真渲染之间的差距方面的有效性。这项研究有助于在建筑中集成机器学习和图像处理的知识体系的发展,为该领域的设计专业人员和研究人员提供见解和实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transforming Sketches into Realistic Images: Leveraging Machine Learning and Image Processing for Enhanced Architectural Visualization
This article presents a novel approach for transforming architectural sketches into realistic images through the utilization of machine learning and image processing techniques. The proposed method leverages the Stable Diffusion model, a deep learning framework specifically designed for text-to-image generation. By integrating image processing algorithms into the workflow, the model gains a better understanding of the input sketches, resulting in visually coherent and meaningful output images. The study explores the application of the Stable Diffusion model in the context of architectural design, showcasing its potential to enhance the visualization process and support designers in generating accurate and compelling representations. The efficacy of the method is evaluated through qualitative and quantitative assessments, demonstrating its effectiveness in bridging the gap between initial sketches and photorealistic renderings. This research contributes to the growing body of knowledge on the integration of machine learning and image processing in architecture, providing insights and practical implications for design professionals and researchers in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Detailed Comparison of Two New Heuristic Algorithms Based on Gazelles Behavior Determination of Pesticide Residues in Water Using Extraction Method Developing an optimization model for minimizing solid waste collection costs Fractal Approach to Dielectric Properties of Single Walled Carbon Nanotubes Reinforced Polymer Composites Evaluation of the Antigenotoxic Effect of Quercetin Against Antiepileptic Drug Genotoxicity by Comet Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1