TASI传感器的分窗算法标定与验证

Victoria Ionca, M. Bogliolo, G. Laneve, G. Liberti, A. Palombo, S. Pignatti
{"title":"TASI传感器的分窗算法标定与验证","authors":"Victoria Ionca, M. Bogliolo, G. Laneve, G. Liberti, A. Palombo, S. Pignatti","doi":"10.1109/IGARSS.2019.8898750","DOIUrl":null,"url":null,"abstract":"In this work, we present the calibration and validation method we have applied in order to retrieve the split window (SW) coefficients for land surface temperature (LST) estimations from Thermal Airborne Spectrographic imager (TASI). For calibration and validation two different datasets has been used, both extracted from SeeBor V5.0 training dataset. The coefficients have been retrieved by a multiple regression analysis and MODTRAN simulations. For the radiative transfer experiment, we considered seven different viewing angles in a range between 0° and 60° with a step of 10°. Simulations have been performed considering all TASI channel combinations and the sensor spectral response functions. Preliminary results are presented for best band combinations suitable for SW algorithm application; these are channel 19 (10.034 gm) with 28 (11.024 gm), and channel 29 (11.134 gm) with 31 (11.354 gm). Finally, validation of the LST retrievals presents a RMSE lower than 0.6 K for both band combinations.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"14 1","pages":"3420-3423"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Split Window Algorithm Calibration and Validation for TASI Sensor\",\"authors\":\"Victoria Ionca, M. Bogliolo, G. Laneve, G. Liberti, A. Palombo, S. Pignatti\",\"doi\":\"10.1109/IGARSS.2019.8898750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present the calibration and validation method we have applied in order to retrieve the split window (SW) coefficients for land surface temperature (LST) estimations from Thermal Airborne Spectrographic imager (TASI). For calibration and validation two different datasets has been used, both extracted from SeeBor V5.0 training dataset. The coefficients have been retrieved by a multiple regression analysis and MODTRAN simulations. For the radiative transfer experiment, we considered seven different viewing angles in a range between 0° and 60° with a step of 10°. Simulations have been performed considering all TASI channel combinations and the sensor spectral response functions. Preliminary results are presented for best band combinations suitable for SW algorithm application; these are channel 19 (10.034 gm) with 28 (11.024 gm), and channel 29 (11.134 gm) with 31 (11.354 gm). Finally, validation of the LST retrievals presents a RMSE lower than 0.6 K for both band combinations.\",\"PeriodicalId\":6466,\"journal\":{\"name\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"14 1\",\"pages\":\"3420-3423\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8898750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了我们应用的校准和验证方法,以便从热机载光谱成像仪(TASI)检索地表温度(LST)估计的分裂窗口(SW)系数。为了校准和验证,使用了两个不同的数据集,都是从SeeBor V5.0训练数据集中提取的。通过多元回归分析和MODTRAN模拟反演了系数。对于辐射传递实验,我们考虑了0°到60°范围内的7种不同视角,步长为10°。考虑了所有TASI通道组合和传感器光谱响应函数,进行了仿真。给出了适合于SW算法应用的最佳频段组合的初步结果;分别是19号通道(10.034克)和28号通道(11.024克),以及29号通道(11.134克)和31号通道(11.354克)。最后,对LST检索结果的验证表明,两种波段组合的RMSE均低于0.6 K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Split Window Algorithm Calibration and Validation for TASI Sensor
In this work, we present the calibration and validation method we have applied in order to retrieve the split window (SW) coefficients for land surface temperature (LST) estimations from Thermal Airborne Spectrographic imager (TASI). For calibration and validation two different datasets has been used, both extracted from SeeBor V5.0 training dataset. The coefficients have been retrieved by a multiple regression analysis and MODTRAN simulations. For the radiative transfer experiment, we considered seven different viewing angles in a range between 0° and 60° with a step of 10°. Simulations have been performed considering all TASI channel combinations and the sensor spectral response functions. Preliminary results are presented for best band combinations suitable for SW algorithm application; these are channel 19 (10.034 gm) with 28 (11.024 gm), and channel 29 (11.134 gm) with 31 (11.354 gm). Finally, validation of the LST retrievals presents a RMSE lower than 0.6 K for both band combinations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ongoing Progress Toward NASA's Surface Biology and Geology Mission Sea Surface Salinity Dynamics in the Bohai Sea Using MODIS Data Water Surface Level Monitoring of the Axios River Wetlands, Greece, Using Airborne and Space-Borne Earth Observation Data Selection of the 3-D Shearlet Cubes for Improving Hyperspectral Image Joint Sparse Classification A New Method for Determining Rain Flag of the Sentinel-3 Altimeter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1