空间集成社会科学数据集的统计分析和可视化服务

Irfan Azeezullah, Friska Pambudi, Tung-Kai Shyy, Imran Azeezullah, Nigel Ward, J. Hunter, R. Stimson
{"title":"空间集成社会科学数据集的统计分析和可视化服务","authors":"Irfan Azeezullah, Friska Pambudi, Tung-Kai Shyy, Imran Azeezullah, Nigel Ward, J. Hunter, R. Stimson","doi":"10.1109/eScience.2012.6404421","DOIUrl":null,"url":null,"abstract":"The field of Spatially Integrated Social Science (SISS) recognizes that much data of interest to social scientists has an associated geographic location. SISS systems use geographic location as the basis for integrating heterogeneous social science data sets and for visualizing and analyzing the integrated results through mapping interfaces. However, sourcing data sets, aggregating data captured at different spatial scales, and implementing statistical analysis techniques over the data are highly complex and challenging steps, beyond the capabilities of many social scientists. The aim of the UQ SISS eResearch Facility (SISS-eRF) is to remove this burden from social scientists by providing a Web interface that allows researchers to quickly access relevant Australian socio-spatial datasets (e.g. census data, voting data), aggregate them spatially, conduct statistical modeling on the datasets and visualize spatial distribution patterns and statistical results. This paper describes the technical architecture and components of SISS-eRF and discusses the reasons that underpin the technological choices. It describes some case studies that demonstrate how SISS-eRF is being applied to prove hypotheses that relate particular voting patterns with socio-economic parameters (e.g., gender, age, housing, income, education, employment, religion/culture). Finally we outline our future plans for extending and deploying SISS-eRF across the Australian Social Science Community.","PeriodicalId":6364,"journal":{"name":"2012 IEEE 8th International Conference on E-Science","volume":"10 3 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical analysis and visualization services for Spatially Integrated Social Science datasets\",\"authors\":\"Irfan Azeezullah, Friska Pambudi, Tung-Kai Shyy, Imran Azeezullah, Nigel Ward, J. Hunter, R. Stimson\",\"doi\":\"10.1109/eScience.2012.6404421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of Spatially Integrated Social Science (SISS) recognizes that much data of interest to social scientists has an associated geographic location. SISS systems use geographic location as the basis for integrating heterogeneous social science data sets and for visualizing and analyzing the integrated results through mapping interfaces. However, sourcing data sets, aggregating data captured at different spatial scales, and implementing statistical analysis techniques over the data are highly complex and challenging steps, beyond the capabilities of many social scientists. The aim of the UQ SISS eResearch Facility (SISS-eRF) is to remove this burden from social scientists by providing a Web interface that allows researchers to quickly access relevant Australian socio-spatial datasets (e.g. census data, voting data), aggregate them spatially, conduct statistical modeling on the datasets and visualize spatial distribution patterns and statistical results. This paper describes the technical architecture and components of SISS-eRF and discusses the reasons that underpin the technological choices. It describes some case studies that demonstrate how SISS-eRF is being applied to prove hypotheses that relate particular voting patterns with socio-economic parameters (e.g., gender, age, housing, income, education, employment, religion/culture). Finally we outline our future plans for extending and deploying SISS-eRF across the Australian Social Science Community.\",\"PeriodicalId\":6364,\"journal\":{\"name\":\"2012 IEEE 8th International Conference on E-Science\",\"volume\":\"10 3 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 8th International Conference on E-Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eScience.2012.6404421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on E-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2012.6404421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空间整合社会科学(SISS)领域认识到,社会科学家感兴趣的许多数据都有一个相关的地理位置。SISS系统将地理位置作为整合异构社会科学数据集的基础,并通过映射接口对整合结果进行可视化和分析。然而,寻找数据集、汇总在不同空间尺度上捕获的数据以及对数据实施统计分析技术是非常复杂和具有挑战性的步骤,超出了许多社会科学家的能力。昆士兰大学SISS电子研究设施(SISS- erf)的目的是通过提供一个网络界面,使研究人员能够快速访问相关的澳大利亚社会空间数据集(如人口普查数据、投票数据),在空间上进行汇总,对数据集进行统计建模,并将空间分布模式和统计结果可视化,从而消除社会科学家的负担。本文描述了SISS-eRF的技术体系结构和组件,并讨论了支持技术选择的原因。它描述了一些案例研究,说明如何应用ssis - erf来证明将特定投票模式与社会经济参数(例如,性别、年龄、住房、收入、教育、就业、宗教/文化)联系起来的假设。最后,我们概述了在澳大利亚社会科学界扩展和部署SISS-eRF的未来计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical analysis and visualization services for Spatially Integrated Social Science datasets
The field of Spatially Integrated Social Science (SISS) recognizes that much data of interest to social scientists has an associated geographic location. SISS systems use geographic location as the basis for integrating heterogeneous social science data sets and for visualizing and analyzing the integrated results through mapping interfaces. However, sourcing data sets, aggregating data captured at different spatial scales, and implementing statistical analysis techniques over the data are highly complex and challenging steps, beyond the capabilities of many social scientists. The aim of the UQ SISS eResearch Facility (SISS-eRF) is to remove this burden from social scientists by providing a Web interface that allows researchers to quickly access relevant Australian socio-spatial datasets (e.g. census data, voting data), aggregate them spatially, conduct statistical modeling on the datasets and visualize spatial distribution patterns and statistical results. This paper describes the technical architecture and components of SISS-eRF and discusses the reasons that underpin the technological choices. It describes some case studies that demonstrate how SISS-eRF is being applied to prove hypotheses that relate particular voting patterns with socio-economic parameters (e.g., gender, age, housing, income, education, employment, religion/culture). Finally we outline our future plans for extending and deploying SISS-eRF across the Australian Social Science Community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scientific Workflow Interchanging through Patterns: Reversals and Lessons Learned Shape Analysis Using the Spectral Graph Wavelet Transform Provenance analysis: Towards quality provenance Fast confidential search for bio-medical data using Bloom filters and Homomorphic Cryptography Calibration of watershed models using cloud computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1