利用经验累积分布保持加速度测量数据的统计特征

Nils Y. Hammerla, Reuben Kirkham, Péter András, T. Plötz
{"title":"利用经验累积分布保持加速度测量数据的统计特征","authors":"Nils Y. Hammerla, Reuben Kirkham, Péter András, T. Plötz","doi":"10.1145/2493988.2494353","DOIUrl":null,"url":null,"abstract":"The majority of activity recognition systems in wearable computing rely on a set of statistical measures, such as means and moments, extracted from short frames of continuous sensor measurements to perform recognition. These features implicitly quantify the distribution of data observed in each frame. However, feature selection remains challenging and labour intensive, rendering a more generic method to quantify distributions in accelerometer data much desired. In this paper we present the ECDF representation, a novel approach to preserve characteristics of arbitrary distributions for feature extraction, which is particularly suitable for embedded applications. In extensive experiments on six publicly available datasets we demonstrate that it outperforms common approaches to feature extraction across a wide variety of tasks.","PeriodicalId":90988,"journal":{"name":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","volume":"61 1","pages":"65-68"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"131","resultStr":"{\"title\":\"On preserving statistical characteristics of accelerometry data using their empirical cumulative distribution\",\"authors\":\"Nils Y. Hammerla, Reuben Kirkham, Péter András, T. Plötz\",\"doi\":\"10.1145/2493988.2494353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The majority of activity recognition systems in wearable computing rely on a set of statistical measures, such as means and moments, extracted from short frames of continuous sensor measurements to perform recognition. These features implicitly quantify the distribution of data observed in each frame. However, feature selection remains challenging and labour intensive, rendering a more generic method to quantify distributions in accelerometer data much desired. In this paper we present the ECDF representation, a novel approach to preserve characteristics of arbitrary distributions for feature extraction, which is particularly suitable for embedded applications. In extensive experiments on six publicly available datasets we demonstrate that it outperforms common approaches to feature extraction across a wide variety of tasks.\",\"PeriodicalId\":90988,\"journal\":{\"name\":\"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference\",\"volume\":\"61 1\",\"pages\":\"65-68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"131\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2493988.2494353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2493988.2494353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 131

摘要

可穿戴计算中的大多数活动识别系统依赖于一组统计度量,例如均值和矩,从连续传感器测量的短帧中提取来执行识别。这些特征隐含地量化了在每帧中观察到的数据的分布。然而,特征选择仍然具有挑战性和劳动密集型,因此迫切需要一种更通用的方法来量化加速度计数据中的分布。在本文中,我们提出了ECDF表示,这是一种保留任意分布特征的新方法,特别适用于嵌入式应用。在六个公开可用数据集的广泛实验中,我们证明了它在各种任务中优于常见的特征提取方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On preserving statistical characteristics of accelerometry data using their empirical cumulative distribution
The majority of activity recognition systems in wearable computing rely on a set of statistical measures, such as means and moments, extracted from short frames of continuous sensor measurements to perform recognition. These features implicitly quantify the distribution of data observed in each frame. However, feature selection remains challenging and labour intensive, rendering a more generic method to quantify distributions in accelerometer data much desired. In this paper we present the ECDF representation, a novel approach to preserve characteristics of arbitrary distributions for feature extraction, which is particularly suitable for embedded applications. In extensive experiments on six publicly available datasets we demonstrate that it outperforms common approaches to feature extraction across a wide variety of tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Semantic Web: 19th International Conference, ESWC 2022, Hersonissos, Crete, Greece, May 29 – June 2, 2022, Proceedings Correction to: A Semantic Framework to Support AI System Accountability and Audit The Semantic Web: 18th International Conference, ESWC 2021, Virtual Event, June 6–10, 2021, Proceedings QAnswer KG: Designing a Portable Question Answering System over RDF Data Incremental Multi-source Entity Resolution for Knowledge Graph Completion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1