{"title":"双分数布朗运动驱动的随机微分方程趋势函数的非参数估计","authors":"Abdelmalik Keddi, Fethi Madani, A. Bouchentouf","doi":"10.2478/ausm-2020-0008","DOIUrl":null,"url":null,"abstract":"Abstract The main objective of this paper is to investigate the problem of estimating the trend function St = S(xt) for process satisfying stochastic differential equations of the type dXt=S(Xt)dt+εdBtH,K, X0=x0, 0≤t≤T, {\\rm{d}}{{\\rm{X}}_{\\rm{t}}} = {\\rm{S}}\\left( {{{\\rm{X}}_{\\rm{t}}}} \\right){\\rm{dt + }}\\varepsilon {\\rm{dB}}_{\\rm{t}}^{{\\rm{H,K}}},\\,{{\\rm{X}}_{\\rm{0}}} = {{\\rm{x}}_{\\rm{0}}},\\,0 \\le {\\rm{t}} \\le {\\rm{T,}} where { BtH,K,t≥0 {\\rm{B}}_{\\rm{t}}^{{\\rm{H,K}}},{\\rm{t}} \\ge {\\rm{0}} } is a bifractional Brownian motion with known parameters H ∈ (0, 1), K ∈ (0, 1] and HK ∈ (1/2, 1). We estimate the unknown function S(xt) by a kernel estimator ̂St and obtain the asymptotic properties as ε → 0. Finally, a numerical example is provided.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric estimation of trend function for stochastic differential equations driven by a bifractional Brownian motion\",\"authors\":\"Abdelmalik Keddi, Fethi Madani, A. Bouchentouf\",\"doi\":\"10.2478/ausm-2020-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The main objective of this paper is to investigate the problem of estimating the trend function St = S(xt) for process satisfying stochastic differential equations of the type dXt=S(Xt)dt+εdBtH,K, X0=x0, 0≤t≤T, {\\\\rm{d}}{{\\\\rm{X}}_{\\\\rm{t}}} = {\\\\rm{S}}\\\\left( {{{\\\\rm{X}}_{\\\\rm{t}}}} \\\\right){\\\\rm{dt + }}\\\\varepsilon {\\\\rm{dB}}_{\\\\rm{t}}^{{\\\\rm{H,K}}},\\\\,{{\\\\rm{X}}_{\\\\rm{0}}} = {{\\\\rm{x}}_{\\\\rm{0}}},\\\\,0 \\\\le {\\\\rm{t}} \\\\le {\\\\rm{T,}} where { BtH,K,t≥0 {\\\\rm{B}}_{\\\\rm{t}}^{{\\\\rm{H,K}}},{\\\\rm{t}} \\\\ge {\\\\rm{0}} } is a bifractional Brownian motion with known parameters H ∈ (0, 1), K ∈ (0, 1] and HK ∈ (1/2, 1). We estimate the unknown function S(xt) by a kernel estimator ̂St and obtain the asymptotic properties as ε → 0. Finally, a numerical example is provided.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2020-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2020-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonparametric estimation of trend function for stochastic differential equations driven by a bifractional Brownian motion
Abstract The main objective of this paper is to investigate the problem of estimating the trend function St = S(xt) for process satisfying stochastic differential equations of the type dXt=S(Xt)dt+εdBtH,K, X0=x0, 0≤t≤T, {\rm{d}}{{\rm{X}}_{\rm{t}}} = {\rm{S}}\left( {{{\rm{X}}_{\rm{t}}}} \right){\rm{dt + }}\varepsilon {\rm{dB}}_{\rm{t}}^{{\rm{H,K}}},\,{{\rm{X}}_{\rm{0}}} = {{\rm{x}}_{\rm{0}}},\,0 \le {\rm{t}} \le {\rm{T,}} where { BtH,K,t≥0 {\rm{B}}_{\rm{t}}^{{\rm{H,K}}},{\rm{t}} \ge {\rm{0}} } is a bifractional Brownian motion with known parameters H ∈ (0, 1), K ∈ (0, 1] and HK ∈ (1/2, 1). We estimate the unknown function S(xt) by a kernel estimator ̂St and obtain the asymptotic properties as ε → 0. Finally, a numerical example is provided.