{"title":"镁基复合材料摩擦学方面的研究进展","authors":"F. Aydın","doi":"10.1080/17515831.2023.2246809","DOIUrl":null,"url":null,"abstract":"ABSTRACT The demand for magnesium (Mg) alloys is increasing in many industries, such as automotive and aerospace, thanks to their low density and high specific strength. However, the poor tribological performance of Mg alloys is one of the most important disadvantages that limit their widespread use. Researchers have developed different approaches to improve the wear performance of Mg alloys, such as alloying, coatings, surface modifications and composite production. Wear performance of systems with sliding parts are crucial for a lifetime and energy efficiency. The development of Mg matrix composites can significantly reduce energy loss by reducing damage from friction and wear. For this reason, it is crucial to understand the wear behaviour of recent Mg matrix composites. The effect of different parameters such as load, sliding speed, reinforcement content, reinforcement type and temperature on the wear performance of Mg matrix composites were investigated. GRAPHICAL ABSTRACT","PeriodicalId":23331,"journal":{"name":"Tribology - Materials, Surfaces & Interfaces","volume":"75 1","pages":"363 - 396"},"PeriodicalIF":1.6000,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tribological aspects of magnesium matrix composites: a review of recent experimental studies\",\"authors\":\"F. Aydın\",\"doi\":\"10.1080/17515831.2023.2246809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The demand for magnesium (Mg) alloys is increasing in many industries, such as automotive and aerospace, thanks to their low density and high specific strength. However, the poor tribological performance of Mg alloys is one of the most important disadvantages that limit their widespread use. Researchers have developed different approaches to improve the wear performance of Mg alloys, such as alloying, coatings, surface modifications and composite production. Wear performance of systems with sliding parts are crucial for a lifetime and energy efficiency. The development of Mg matrix composites can significantly reduce energy loss by reducing damage from friction and wear. For this reason, it is crucial to understand the wear behaviour of recent Mg matrix composites. The effect of different parameters such as load, sliding speed, reinforcement content, reinforcement type and temperature on the wear performance of Mg matrix composites were investigated. GRAPHICAL ABSTRACT\",\"PeriodicalId\":23331,\"journal\":{\"name\":\"Tribology - Materials, Surfaces & Interfaces\",\"volume\":\"75 1\",\"pages\":\"363 - 396\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology - Materials, Surfaces & Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17515831.2023.2246809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology - Materials, Surfaces & Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17515831.2023.2246809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Tribological aspects of magnesium matrix composites: a review of recent experimental studies
ABSTRACT The demand for magnesium (Mg) alloys is increasing in many industries, such as automotive and aerospace, thanks to their low density and high specific strength. However, the poor tribological performance of Mg alloys is one of the most important disadvantages that limit their widespread use. Researchers have developed different approaches to improve the wear performance of Mg alloys, such as alloying, coatings, surface modifications and composite production. Wear performance of systems with sliding parts are crucial for a lifetime and energy efficiency. The development of Mg matrix composites can significantly reduce energy loss by reducing damage from friction and wear. For this reason, it is crucial to understand the wear behaviour of recent Mg matrix composites. The effect of different parameters such as load, sliding speed, reinforcement content, reinforcement type and temperature on the wear performance of Mg matrix composites were investigated. GRAPHICAL ABSTRACT