基于 5G 的移动 ad-hoc 网络中使用强化学习确保 QoS 的 AODV 路由协议改进方法

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS ICT Express Pub Date : 2024-02-01 DOI:10.1016/j.icte.2023.07.002
Le Huu Binh , Thuy-Van T. Duong
{"title":"基于 5G 的移动 ad-hoc 网络中使用强化学习确保 QoS 的 AODV 路由协议改进方法","authors":"Le Huu Binh ,&nbsp;Thuy-Van T. Duong","doi":"10.1016/j.icte.2023.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>5G-based MANET has received a lot of attention recently. Its fundamental feature is that nodes are constantly subjected to high traffic loads, while QoS requirements are extremely stringent. When applied to 5G-based MANETs, existing routing protocols have shown drawbacks. In this paper, we propose an enhanced AODV protocol solution for 5G-based MANETs. Using reinforcement learning, each node updates a state information database of intermediate nodes along routes to destinations. This database is used by the routing algorithm to find guaranteed QoS routes. Our solution is highly efficient in terms of throughput, end-to-end delay, and SNR, according to the simulation results.</p></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 1","pages":"Pages 97-103"},"PeriodicalIF":4.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405959523000814/pdfft?md5=1a764e3dedef347e73e8f0024dcb4ced&pid=1-s2.0-S2405959523000814-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An improved method of AODV routing protocol using reinforcement learning for ensuring QoS in 5G-based mobile ad-hoc networks\",\"authors\":\"Le Huu Binh ,&nbsp;Thuy-Van T. Duong\",\"doi\":\"10.1016/j.icte.2023.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>5G-based MANET has received a lot of attention recently. Its fundamental feature is that nodes are constantly subjected to high traffic loads, while QoS requirements are extremely stringent. When applied to 5G-based MANETs, existing routing protocols have shown drawbacks. In this paper, we propose an enhanced AODV protocol solution for 5G-based MANETs. Using reinforcement learning, each node updates a state information database of intermediate nodes along routes to destinations. This database is used by the routing algorithm to find guaranteed QoS routes. Our solution is highly efficient in terms of throughput, end-to-end delay, and SNR, according to the simulation results.</p></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"10 1\",\"pages\":\"Pages 97-103\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405959523000814/pdfft?md5=1a764e3dedef347e73e8f0024dcb4ced&pid=1-s2.0-S2405959523000814-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959523000814\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959523000814","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

基于 5G 的城域网最近受到了广泛关注。其基本特征是节点持续承受高流量负载,同时对 QoS 的要求极为严格。在应用于基于 5G 的城域网时,现有的路由协议显示出了缺点。本文针对基于 5G 的城域网提出了增强型 AODV 协议解决方案。通过强化学习,每个节点都会更新通往目的地路由沿线中间节点的状态信息数据库。路由算法使用该数据库来寻找保证质量的路由。根据仿真结果,我们的解决方案在吞吐量、端到端延迟和信噪比方面都非常高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved method of AODV routing protocol using reinforcement learning for ensuring QoS in 5G-based mobile ad-hoc networks

5G-based MANET has received a lot of attention recently. Its fundamental feature is that nodes are constantly subjected to high traffic loads, while QoS requirements are extremely stringent. When applied to 5G-based MANETs, existing routing protocols have shown drawbacks. In this paper, we propose an enhanced AODV protocol solution for 5G-based MANETs. Using reinforcement learning, each node updates a state information database of intermediate nodes along routes to destinations. This database is used by the routing algorithm to find guaranteed QoS routes. Our solution is highly efficient in terms of throughput, end-to-end delay, and SNR, according to the simulation results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
期刊最新文献
Editorial Board Performance analysis of multi-hop low earth orbit satellite network over mixed RF/FSO links Symbol-level precoding scheme robust to channel estimation errors in wireless fading channels Hybrid Approach with Membership-Density Based Oversampling for handling multi-class imbalance in Internet Traffic Identification with overlapping and noise Integrated beamforming and trajectory optimization algorithm for RIS-assisted UAV system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1